JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year II Semester Examinations, May/June - 2017 MATHEMATICS-II
 (Common to EEE, ECE, CSE, EIE, IT)

Time: 3 hours

Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Find the Laplace transform of $f(t)=\left\{\begin{array}{c}K, 0<t<2 \\ 0,2<t<4\end{array}, f(t+4)=f(t), \forall t>0\right.$. [2]
b) Find the Laplace transform of $f(t)=\frac{1-e^{t}}{t}$.
c) Evaluate $\beta\left(\frac{9}{2}, \frac{7}{2}\right)$.
d) Evaluate $\int_{0}^{\infty} e^{-x^{2}} d x$.
e) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta$ using beta and gamma functions.
f) Show that the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
g) Find a vector normal to the surface $x y z^{2}=20$ at the point $(1,1,2)$.
h) If $u \bar{F}=\nabla u$, where u, v are scalar fields and \bar{F} is a vector field, show that $\bar{F} \cdot \operatorname{curl} \bar{F}=0$.
i) State Green's theorem.
j) Find the work done by a force $y \bar{i}+x \bar{j}$ which displays a particle from origin to a point $(\bar{i}+\bar{j})$ along the line $y=x$.

PART-B

(50 Marks)
2.a) Express the function $f(t)$ in terms of unit step function, where $f(t)=\left[\begin{array}{ll}t-1, & 1<t<2 \\ 3-t, & 2<t<3\end{array}\right.$.
Hence find its Laplace transform.
b) Find the Laplace transform of $\int_{0}^{\infty} t e^{-3 t} \sin t d t$.

OR

3.a) State the convolution theorem on Laplace transforms. Using it find the inverse Laplace transform of $\frac{1}{s\left(s^{2}+a^{2}\right)}$.
b) Solve $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t} \sin t, y(0)=0$ and $y^{\prime}(0)=1$ using Laplace transforms.
4.a) Evaluate $\int_{0}^{1} x^{5 / 2}(1-x)^{3 / 2} d x$ using Beta, Gamma functions.
b) Evaluate $\int_{0}^{1} \frac{d \mathbf{W W W} . \text { ManaResults.Co. in }}{\left(1-x^{n}\right)^{\frac{1}{n}}}$.

OR

5.a) Show that $\int_{0}^{\infty} \frac{t^{m-1}}{(a+b t)^{m+n}} d t=\frac{\beta(m, n)}{a^{n} b^{m}}$, where m, n, a, b are positive integers.
b) Evaluate $\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$.
6.a) Evaluate $\int_{0}^{1} \int_{0}^{x} \frac{x^{3} d x d y}{\sqrt{x^{2}+y^{2}}}$ by changing into polar coordinates.
b) By double integration, calculate the area bounded by the curve $a^{2} x^{2}=y^{3}(2 a-y)$.

OR

7.a) Find the area enclosed in the first quadrant by the curve $\left(\frac{x}{a}\right)^{\alpha}+\left(\frac{y}{b}\right)^{\beta}=1, \alpha>0, \beta>0$, using beta gamma functions.
b) Find the center of gravity of the area of the cardioid $r=a(1+\cos \theta)$.
8.a) Show that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$.
b) If $f=\left(x^{2}+y^{2}+z^{2}\right)^{-n}$, find div $\operatorname{grad} f$ and determine n if $\operatorname{div} \operatorname{grad} f=0$.

OR

9.a) Show that the vector $\bar{F}=(x+3 y) \bar{i}+(y-3 z) \bar{j}+(x-2 z) \bar{k}$ is solenoidal and also find $\bar{F} \cdot \operatorname{curl} \bar{F}$.
b) In what direction from $(3,1,-2)$ is the directional derivative of $\phi=x^{3} y^{2}+y z$ maximum? Find also the magnitude of this maximum.
10. State Stokes theorem. Verify it for the vector field $\bar{F}(2 x-y) \bar{i}-y z^{2} \bar{j}-y^{2} z \bar{k}$ over the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$, bounded by its projection on the $x y$-plane.

OR

11.a) Using Green's theorem, find the area of the region in the first quadrant bounded by the curves $y=x, y=\frac{1}{x}, y=\frac{x}{4}$.
b) Evaluate $\iiint_{V} \operatorname{div} \bar{F} d V$, where $\bar{F}=y \bar{i}+x \bar{j}+z^{2} \bar{k} \quad$ over the surface of the cylinder $x^{2}+y^{2}=a^{2}, z=0, z=h$.

