JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech I Year II Semester Examinations, August - 2018

MATHEMATICS - II
(Common to EEE, ECE, CSE, EIE, IT, ETM)
Time: $\mathbf{3}$ hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A
(25 Marks)
1.a) Find the Laplace transform of the function $f(t)=t^{2}$.
b) Find Laplace transform of $4 \sin (t-3)$.
c) Show that $\Gamma(n)=2 \int_{0}^{\infty} e^{-x^{2}} x^{2 n-1} d x$.
d) Show that $\beta(p, q)=\beta(p+1, q)+\beta(p, q+1)$.
e) Find the area bounded by the curves $y=x, y=x^{2}$.
f) Evaluate $\int_{0}^{1} \int_{0}^{1} x^{2} y^{2} d x d y$
g) If $\phi=x^{2} y^{2} z^{2}$ then find $\operatorname{Grad} \phi$.
h) Find a unit normal vector to the surface $x^{2}+y^{2}+2 z^{2}=26$ at the point $(2,2,3)$. [3]
i) Find curl \bar{F} when $\vec{F}=3 x^{2} i+(2 x z-y) j+z k$.
j) Is the work done by a force in moving a particle from one point to another point in an irrotational field is independent of the path of integration? Justify the answer.

PART-B

(50 Marks)
2. Use Laplace transforms, solve $y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=t, \quad y(0)=1, y^{\prime}(0)=1$.

OR

3. Solve by using Laplace transforms $y^{\prime \prime}+4 y^{\prime}+3 y=e^{-t}$ with $y(0)=y^{\prime}(0)=1$. [10]
4. Prove that $\int_{0}^{1} \frac{x^{2} d x}{\sqrt{1-x^{4}}} \times \int_{0}^{1} \frac{d x}{\sqrt{1+x^{4}}}=\frac{\pi}{4 \sqrt{2}}$ using $\beta-\Gamma$ functions.

OR

5.a) Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$
b) Prove that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
6. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axes in A, B and C. Find the volume of the tetrahedron $O A B C$.

OR

7. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} x^{2} y z d z d y d x$.
8. Prove that if \vec{r} is the position vector of any point in space then $r^{n} \vec{r}$ is irrotational and is solenodial if $\mathrm{n}=-3$.
OR
9.a) Evaluate $\nabla \cdot\left(r \nabla\left(\frac{1}{r^{3}}\right)\right)$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
b) If $\bar{R}=x \bar{i}+y \bar{j}+z \bar{k}$, then find $\nabla \cdot \bar{R}$ and $\nabla \times \bar{R}$.
9. Verify Stoke's theorem for the vector field $\vec{F}=\left(x^{2}-y^{2}\right) i+2 x y j$ integrated round the rectangle in the plane $z=0$ and bounded by the lines $x=0, y=0, x=a, y=b$. [10]

OR

11. Verify divergence theorem for $2 x^{2} y i-y^{2} j+4 x z^{2} k$ taken over the region of first octant of the cylinder $y^{2}+z^{2}=9$ and $x=2$.

--00Ooo--

