JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, May/June - 2019

 DIGITAL LOGIC DESIGN(Common to CSE, IT)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.
PART- A
(25 Marks)
1.a) What are 2's complement and 9's complement of a numbers? Give examples. [2]
b) State and prove De Morgan theorems.
c) What are minterms and maxterms? Give examples for each.
d) Define pair quad and octet in K-Maps and give examples.
e) Draw the logic circuit of a full adder and give its truth table.
f) Write the functions of a decoder and multiplexer.
g) Draw the logic diagram of a master slave J-K flip-flop.
h) Describe the race free state assignment in asynchronous sequential circuits.
i) What are PLAs and PALs?
j) Explain about arithmetic operations with examples.

PART-B

(50 Marks)
2.a) Explain various number systems and codes and their conversion with examples for each.
b) Simplify the following Boolean expressions to a minimum number of literals
(i) $\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{ABC}{ }^{\prime}$
(ii) $x y+x(w z+w z ')$
[5+5]

OR
3.a) Express the following numbers in decimal : $(10110.0101)_{2},(16.5)_{16},(26.24)_{8}$.
b) Demonstrate by means of truth tables the Boolean Associative law and distributive law.
c) Simplify the Boolean expression to minimum number of literals: $(A+B)^{\prime}\left(A^{\prime}+B^{\prime}\right)$. [10]
4.a) Simplify the following Boolean functions, using a four variable Karnaugh map method and implement the simplified function using NAND gates
$\left.F(A, B, C, D)=\sum 0,2,4,5,6,7,8,10,13,15\right)$
b) Show that the dual of the exclusive OR is also its compliment.

OR

5.a) Draw the multiple level NAND circuit for the following expression:
$\left(A B^{\prime}+C D^{\prime}\right) E+B C(A+B)$
b) Simplify the following four variable Boolean function and implement the same using NAND logic. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,2,4,5,6,7,8,10,13,15)$
[5+5]
6.a) Construct a 4-bit BCD adder-substractor circuit using BCD adder and 9's complementer.
b) Explain the working and functions of decoders and encoders. Construct 2/4 line decoder with logic gates with enable input.

OR

7.a) Construct a 4 bit 2's complement adder using full adders and perform addition and subtraction by taking 4 -bit numbers with examples.
b) Explain the design procedure for multiplexers and de-multiplexers and draw the logic diagram of a 4-to-1 line multiplexer with logic gates.
[5+5]
8.a) Design 4-bit shift register using D flip-flops and explain its working with the help of timing diagrams.
b) Design a counter with the following repeated binary sequence: $0,1,2,3,4,5,6$, use JK flip-flops.

OR

9.a) Draw the circuit diagram of a 4-bit binary counter with parallel load and explain its working with its function table.
b) Design a 4 bit synchronous counter with D flip - flops and explain its working. [5+5]
10.a) Given 32×8 ROM with enable input, Show the external connections necessary to construct a 128×8 ROM with 4 chips and a decoder.
b) Explain the working of a PLA with a schematic and implement the following two Boolean functions with a PLA:
$F_{1}(A, B, C)=\sum(0,1,2,4)$ and $F_{2}(A, B, C)=\sum(0.5 .6 .7)$.
OR
11.a) Explain the functions and applications of PLAs in memory addressing and implement the following two Boolean functions with a PLA:
$F_{1}(A, B, C)=\sum(0,1,3,5)$ and $F_{2}(A, B, C)=\sum(1,2,4,7)$
b) What are sequential programmable devices? Draw the sequential programmable logic for a basic microcell logic.

