JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2017 DIGITAL LOGIC DESIGN
 (Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

(25 Marks)
1.a) Subtract the following using 1's and 2's complement (101) $-(10110)_{2}$. [2]
b) Distinguish between canonical and standard forms by giving an example. [3]
c) Derive the sum of minterms for the function $f(a, b, c)=a^{\prime} b+b^{\prime} c^{\prime}$
d) Implement the following function using only NAND Gates $\mathrm{F}=\mathrm{a} .\left(\mathrm{b}^{\prime}+\mathrm{c}^{\prime}\right)+(\mathrm{b} . \mathrm{c})$.
e) Differentiate multiplexer and de-multiplexer.
f) Draw the diagram of 4-Bit Parallel adder cum parallel subtractor.
g) Show the excitation table and truth table of JK flip flop.
h) Differentiate critical and non-critical race.
i) Define Register Transfer Language.
j) Differentiate PLA and PAL.

PART-B

(50 Marks)
2.a) What are the various logic gates, give the representation along with the truth table.
b) What is the use of complements? Perform subtraction using 7's complement for the given Base-7 numbers (565)-(666).
[5+5]
OR
3.a) Convert the following to the corresponding bases
i) $(9 \mathrm{BCD})_{16}=(\quad)_{8}$
ii) $(323)_{4}=(\quad)_{5}$
b) Given the 8 bit data word 11011011, generate the 12 bit composite word for the Hamming code that corrects and detects single errors.
4.a) Derive the product of maxterms for $f(a, b, c, d)=a . b . c+b^{\prime} . d+c . d^{\prime}$.
b) Derive and Implement Exclusive OR function involving three variables using only NAND function.

OR

5.a) Obtain the simplified expression in SOP form of $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})=\sum(1,2,4,7,12,14,15,24,27,29,30,31)$ using K-maps.
b) Implement the function $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\pi(0,1,3,4)$ using NAND-NAND two level gate structure.
6.a) Implement and odd parity generator for 3-bit using a decoder.
b) Design a circuit for 2-bit binary multiplier.

OR
7.a) Define a multiplexer? Draw a $4: 1$ multiplexer for the function $f(a, b, c, d)=\sum(0,4,5,10,11,12,15)$
b) Design a full binary adder with two half adders and a OR gate.
8.a) Explain about a NOR Latch in detail, with a neat diagram.
b) Design a 3-bit counter using T flip flops.

OR

9. Define essential hazard? Implement SR Latch by avoiding Hazard Neatly draw the diagram of SR latch before hazard and after Hazard elimination.
10. Explain about RAM in detail.

OR

11. What is a micro operation? List and explain its categories with relevant examples.
