[5+5]

Code No: 133AJ

b)

structure.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2017 DIGITAL LOGIC DESIGN

(Common to CSE, IT) Time: 3 Hours Max. Marks: 75 **Note:** This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART- A **(25 Marks)** Subtract the following using 1's and 2's complement $(101)_2$ - $(10110)_2$. 1.a) [2] b) Distinguish between canonical and standard forms by giving an example. [3] Derive the sum of minterms for the function f(a,b,c)=a'b+b'c'[2] c) Implement the following function using only NAND Gates F=a.(b'+c')+(b.c). d) [3] [2] e) Differentiate multiplexer and de-multiplexer. Draw the diagram of 4-Bit Parallel adder cum parallel subtractor. f) [3] Show the excitation table and truth table of JK flip flop. [2] g) Differentiate critical and non-critical race. h) [3] Define Register Transfer Language. i) [2] i) Differentiate PLA and PAL. [3] PART-B **(50 Marks)** 2.a) What are the various logic gates, give the representation along with the truth table. What is the use of complements? Perform subtraction using 7's complement for b) the given Base-7 numbers (565)-(666). [5+5]Convert the following to the corresponding bases 3.a) i) $(9BCD)_{16} = ($)8 ii) $(323)_4 = ($ b) Given the 8 bit data word 11011011, generate the 12 bit composite word for the Hamming code that corrects and detects single errors. [5+5]4.a) Derive the product of maxterms for f(a,b,c,d)=a.b.c+b'.d+c.d'. b) Derive and Implement Exclusive OR function involving three variables using only NAND function. [5+5]Obtain the simplified expression in SOP form of 5.a) $F(a,b,c,d,e)=\sum (1,2,4,7,12,14,15,24,27,29,30,31)$ using K-maps.

Implement the function $f(a,b,c)=\pi(0,1,3,4)$ using NAND-NAND two level gate

6.a)	Implement and odd parity generator for 3-bit using a decoder.	
b)	Design a circuit for 2-bit binary multiplier.	[5+5]
	OR	
7.a)	Define a multiplexer? Draw a 4:1 multiplexer for the function $f(a,b,c,d)=\sum (0, 4,5,10,11,12,15)$	
b)	Design a full binary adder with two half adders and a OR gate.	[5+5]
8.a)	Explain about a NOR Latch in detail, with a neat diagram.	
b)	Design a 3-bit counter using T flip flops.	[5+5]
,	OR	
9.	Define essential hazard? Implement SR Latch by avoiding Hazard Near	tly draw
	the diagram of SR latch before hazard and after Hazard elimination.	[10]
10.	Explain about RAM in detail.	[10]
OR		
11.	What is a micro operation? List and explain its categories with relevant ex	amples. [10]

---00000---