JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD **B.Tech II Year I Semester Examinations, December - 2019 DIGITAL LOGIC DESIGN**

(Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

R16

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

	(2	25 Marks)
1.a)	Convert $(10110)_2$ to Gray code and $(110101)_G$ to binary number.	[2]
b)	Explain about Floating point number representation with an example.	[3]
c)	What are universal gates and why they are called as universal gates.	[2]
d)	Realize the following function as multilevel NAND-NAND network	
	$f = B(A + CD) + A\bar{C}$	[3]
e)	What is a multiplexer? What is the function of a multiplexer's select input.	[2]
f)	Can more than one decoder output be activated at one time? Justify your answer	r? [3]
g)	What is a flip-flop? Write down the characteristic equation of S-R flipflop.	[2]
h)	Discuss the difference between synchronous and asynchronous sequential circuit	its.[3]
i)	What are shift micro operations and what are the different types.	[2]
j)	Explain about sequential programmable logic devices	[3]

PART-B

2.a) Convert the following i) $(53.625)_{10}$ to $(?)_2$ ii) $(3FD)_{16}$ to $(?)_2$ iii) $(A69.8)_{16}$ to $(?)_{10}$ Perform the decimal subtraction in 8-4-2-1 BCD using 9's complement b) [5+5]

i) Subtract 79 from 26 ii) Subtract 748 from 983.

OR

- Simplify the following expression using Boolean algebra rules $A\overline{B} + ABC + A(B + A\overline{B})$ 3.a)
- b) Check whether the received code 10101100 is correctly received or not if even parity is used. [5+5]
- 4.a) Reduce the following function using K-Map. $F(A,B,C,D,E) = \Sigma m(1,4,8,10,11,20,22,24,25,26) + d(0,12,16,17)$
 - Write down the procedure to convert a given AND-OR gate network to all NAND gate b) network and illustrate with an example. [5+5]

OR

Obtain the minimal sum of products expression for the following function and implement 5.a) the same using only NAND gates

$$f(A, B, C, D) = \sum (1, 4, 7, 8, 9, 11) + \Sigma_d(0, 3, 5)$$

b) Realize the following function with i) Multilevel NAND-NAND network and ii) Multilevel NOR-NOR network.

$$Y = \overline{AB} + B(C+D) + E\overline{F}(\overline{B} + \overline{D})$$
[5+5]

www.manaresults.co.in

(50 Marks)

6.a)	What is a combinational logic circuit? Implement a Full adder using two half adder one OR gate	ders and
b)	With a neat diagram explain in detail about Decimal Adder.	[5+5]
0)	OR	[0,0]
7.a)	Design and explain a 4-bit binary parallel Adder/Subtractor.	
b)	Draw the logic diagram of 2:4 Decoder with an ENABLE input using: i) NAND g	gates
	ii) NOR gates. Show that the realization using NAND gates is more conver	nient to
	distinguish the selected output with a value of 0.	[5+5]
8.a)	Convert an SR Flip-Flop into JK Flip-Flop.	
b)	With a neat diagram explain about 4-bit bidirectional shift register.	[5+5]
	OR	
9.	Design the counter that goes through states 1,2,4,5,7,8,,10,11,1using JK fl	
		[10]
10.a)	A combinational circuit is defined by the functions:	
	$F_1 = \sum m(3,5,7)$ $F_2 = \sum m(4,5,7)$	
	Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs.	
b)	Explain about Read and Write cycles of a static RAM with neat timing waveforms	s.
		[5+5]
	OR	
		-

11. With a neat diagram explain in detail about two dimensional memory decoding scheme. [10]

---00000----

www.manaresults.co.in