JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, December - 2019 DIGITAL LOGIC DESIGN
(Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Convert $(10110)_{2}$ to Gray code and $(110101)_{\mathrm{G}}$ to binary number.
b) Explain about Floating point number representation with an example.
c) What are universal gates and why they are called as universal gates.
d) Realize the following function as multilevel NAND-NAND network $f=B(A+C D)+A \bar{C}$
e) What is a multiplexer? What is the function of a multiplexer's select input.
f) Can more than one decoder output be activated at one time? Justify your answer?
g) What is a flip-flop? Write down the characteristic equation of S-R flipflop.
h) Discuss the difference between synchronous and asynchronous sequential circuits.[3]
i) What are shift micro operations and what are the different types.
j) Explain about sequential programmable logic devices

PART-B

(50 Marks)
2.a) Convert the following
i) $(53.625)_{10}$ to $(?)_{2}$
ii) $(3 \mathrm{FD})_{16}$ to $(?)_{2}$
iii) $(\text { A69.8 })_{16}$ to $(?)_{10}$
b) Perform the decimal subtraction in 8-4-2-1 BCD using 9's complement
i) Subtract 79 from 26
ii) Subtract 748 from 983.
[5+5]
OR
3.a) Simplify the following expression using Boolean algebra rules $\overline{\overline{A \bar{B}+A B C}+A(B+A \bar{B})}$
b) Check whether the received code 10101100 is correctly received or not if even parity is used.
[5+5]
4.a) Reduce the following function using K-Map.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma \mathrm{m}(1,4,8,10,11,20,22,24,25,26)+\mathrm{d}(0,12,16,17)$
b) Write down the procedure to convert a given AND-OR gate network to all NAND gate network and illustrate with an example.

OR

5.a) Obtain the minimal sum of products expression for the following function and implement the same using only NAND gates
$f(A, B, C, D)=\sum(1,4,7,8,9,11)+\sum_{d}(0,3,5)$
b) Realize the following function with i) Multilevel NAND-NAND network and
ii) Multilevel NOR-NOR network.

$$
\begin{equation*}
Y=\bar{A} B+B(C+D)+E \bar{F}(\bar{B}+\bar{D}) \tag{5+5}
\end{equation*}
$$

6.a) What is a combinational logic circuit? Implement a Full adder using two half adders and one OR gate.
b) With a neat diagram explain in detail about Decimal Adder.

OR

7.a) Design and explain a 4-bit binary parallel Adder/Subtractor.
b) Draw the logic diagram of 2:4 Decoder with an ENABLE input using: i) NAND gates ii) NOR gates. Show that the realization using NAND gates is more convenient to distinguish the selected output with a value of 0 .
8.a) Convert an SR Flip-Flop into JK Flip-Flop.
b) With a neat diagram explain about 4-bit bidirectional shift register.

OR

9. Design the counter that goes through states $1,2,4,5,7,8,, 10,11,1 \ldots .$. using JK flip-flops.
10.a) A combinational circuit is defined by the functions:
$\mathrm{F}_{1}=\sum m(3,5,7) \quad \mathrm{F}_{2}=\sum m(4,5,7)$
Implement the circuit with a PLA having 3 inputs, 3 product terms and two outputs.
b) Explain about Read and Write cycles of a static RAM with neat timing waveforms.

OR

11. With a neat diagram explain in detail about two dimensional memory decoding scheme.
