R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, April/May - 2018 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
(Common to CSE, IT)
Time: 3 Hours
Max. Marks: 75

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Construct the truth table for the following formula:
$\neg(P \vee(Q \wedge R)) \leftrightarrow((P \vee Q) \wedge(P \vee R))$
b) Explain duality law.
c) Give the formal definition for the composition of binary relations.
d) What are the properties of a group?
e) State addition principle and give an example of a problem solved by addition principle.
f) State pigeon-hole principle.
g) What is the general form of a first-order recurrence relation?
h) What is the generating function of $1,-1,1,-1, \ldots$
i) If a simple graph G contains n vertices and m edges, how many number of edges are present in Graph G^{\prime} (complement of G).
j) How many edges are present in a complete graph with n vertices? Explain.

PART- B

(50 Marks)
2.a) Show the following equivalence without constructing the truth table.

$$
((P \wedge Q \wedge A) \rightarrow C) \wedge(A \rightarrow(P \vee Q \vee C)) \Leftrightarrow(A \wedge(P \leftrightarrow Q)) \rightarrow C
$$

b) Without constructing a truth table, show that $A \wedge E$ is not a valid consequence of

$$
\begin{equation*}
A \leftrightarrow B \quad B \leftrightarrow(C \wedge D) \quad C \leftrightarrow(A \vee E) \quad A \vee E \tag{5+5}
\end{equation*}
$$

OR

3.a) Obtain the principal disjunctive and conjunctive normal form of the following formula.

$$
(P \rightarrow(Q \wedge R)) \wedge(\neg P \rightarrow(\neg Q \wedge \neg R))
$$

b) For the following formulas, let the universe be \mathbb{R}. Translate each of the following sentences into a formula (using quantifiers):
i) There is a smallest number.
ii) Every positive number has a square root. (Do not use the square root symbol; use only multiplication.)
4.a) Consider the following Hasse diagram of a partially ordered set $\langle P, R\rangle$, where $P=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Find the least and greatest members in P if they exist. Also find the maximal and minimal elements of P. Find the upper and lower bounds of $\left\{x_{2}, x_{3}, x_{4}\right\},\left\{x_{2}, x_{4}, x_{5}\right\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}$. Also indicate the LUB and GLB of these subsets if they exist.
b) Let $n \in N^{+}$and $G_{1}, G_{2}, \ldots, G_{n}$ be groups, and consider
$\prod_{i=1}^{n} G_{i}:=G_{1} \times G_{2} \times \ldots \times G_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in G_{i} \forall i=1,2, \ldots, n\right\}$ with the operation \dagger where if $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, then $x \dagger y=\left(a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{n} b_{n}\right)$, where each product $a_{i} b_{i}$ is performed according to the operation of the group G_{i}. Show that $\prod_{i=1}^{n} G_{i}$ is a group.

OR

5.a) Find the transitive closure of the relation $R=\{(1,2),(2,3),(3,4),(4,1)\}$. Show R^{i} for all values of i that give new elements of the transitive closure.
b) Find all the subgroups of (i) $\left(Z_{12},+_{12}\right)$; and (ii) $\left(Z_{7}^{*}, \times_{7}\right)$.
6. In the United States and Canada, a telephone number is a 10 -digit number of the form $N X X-N X X-X X X X$ where $N \in\{2,3, . ., 9\}$ and $X \in\{0,1,2, \ldots, 9\}$. How many telephone numbers are possible? The first three digits of a telephone number are called an area code. How many different area codes must a city with $23,000,000$ phones have? A previous scheme for forming a telephone numbers required a format of $N Y X-N X X-X X X X$ where N and X are defined as above and Y is either a 0 or a 1 . How many more phone numbers are possible under the new format than under the old format?
[10]

OR

7.a) How many four letter words can be formed using the letters $a, a, a, b, b, c, c, c, c, d, d$?
b) Expand $(2 x-y)^{7}$ using the Binomial Theorem.
8.a) Solve the recurrence relation $a_{n}=2 a_{n-1}+3 a_{n-2}$ for $n \geq 2$ where $a_{0}=2$ and $a_{1}=2$.
b) Using generating function find a_{n} in terms of n if $a_{0}=1, a_{1}=2$ and $a_{n+2}=5 a_{n+1}-4 a_{n}$ for $n \geq 0$.

OR

9.a) Solve the recurrence relation $T(n)=4 T(n-1)+2^{n}$, with $T(0)=6$.
b) Find the coefficient of x^{2005} in the generating function $\frac{1}{(1+5 x)^{2}}$.
10.a) Determine whether the given pair of graphs is isomorphic?

b) Determine whether the following graph has an Euler circuit or path.

11.a) How do you test the planarity of a graph? Explain.
b) What are the chromatic numbers of the graph G and H ?

---00000---

