Code No: 133BC

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, November/December - 2017 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Represent the proposition "If you have the flee then you miss the final examination" into symbolic form and also it negation.
[2]
b) Provide a proof by direct method of the following statement, "If x is odd then x^{2} is odd".
c) Differentiate partial ordering and total ordering relations.
d) Define lattice and write its properties.
e) Find out how many 5-digit numbers greater than 30,000 can be formed from the digits 1,2,3,4 and 5 .
f) In how many ways can we draw a heart or queen from a pack of cards. [3]
g) Define recurrence relation and explain recurrence relation for towers of Hanoi.
h) Solve recurrence relation $a_{n}-4 a_{n-1}+4 a_{n-2}=0, a_{0}=0, a_{1}=1$.[3]
i) Define complete graph and wheel graph.
j) Define planar graph and write conditions for testing planarity of the graph .[3]

PART-B

(50 Marks)
2.a) State and explain the rules that can generate a well formed formula.
b) Show that $R \rightarrow S$ can be derived from premises, $P \rightarrow(Q \rightarrow S),(\sim R \vee P)$ and Q.
[5+5]

OR

3.a) Define PDNF and find PDNF for $(\sim \mathrm{P} \leftrightarrow \mathrm{R}) \wedge(\mathrm{Q} \leftrightarrow \mathrm{P})$.
b) Prove or disprove the validity of the following arguments using the rules of inference, All men are fallible, All kings are men, Therefore, all kings are fallible.
[5+5]
4.a) If a, b are any two elements of a group (G, .) which commute, show that a^{-1} and b commute, b^{-1} and a commute, a^{-1} and b^{-1} commute.
b) Let $A=\{1,2,3,4,6,8,12,24\}$, show that the relation 'divides' is partial ordering on A and draw Hasse diagram.
[5+5]

OR

5.a) Let $\mathrm{G}=\{-1,0,1\}$, verify whether G forms a group under usual addition.
b) Show that the sets of even numbers and odd numbers are both recursive.
6.a) Find the number of integers between 1 and 250 which are divisible by any of the integers $2,3,5$ or 7 and hence find the number of integers between 1,250 which are not divisible by $2,3,5$ or 7 .
b) State and prove binomial theorem.

OR

7.a) The letters of the word VICTORY are rearranged in all possible ways and the words thus obtained are arranged as in a dictionary, what is the rank of the given word?
b) Use multinomial theorem to expand $\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{4}$.
8.a) Solve the recurrence relation $a_{n}-5 a_{n-1}+6 a_{n-2}=(n+1)^{2}, a_{0}=0, a_{1}=1$.
b) Solve the recurrence relation $a_{n}-7 a_{n-1}+10 a_{n-2}=4^{n}, a_{0}=0, a_{1}=1$.

OR

9.a) Explain Fibonacci relation with suitable examples and also solve it.
b) Solve $a_{n}-7 a_{n-1}+10 a_{n-2}=0, a_{0}=10, a_{1}=41$ using generating functions.
10.a) In any planar graph, show that $|\mathrm{V}|-|\mathrm{E}|+\mathrm{R} \mid=2$.
b) Prove that complete graph of 5 vertices is non planar.

OR

11.a) Write an algorithm for breadth-first search spanning tree.
b) Write Kruskal's Algorithm and explain it with an example.
---00000---

