Code No: 134BD

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year II Semester Examinations, April - 2018 FORMAL LANGUAGES AND AUTOMATA THEORY

; Time: 3 Hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

1.a) Define DFA.
b) Write about the applications of Finite Automata?
c) If a Regular grammar G is given by $\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{a}$ Find DFA (M) accepting $\mathrm{L}(\mathrm{G})$?
d) Construct a regular grammar for $\mathrm{L}=\left\{0^{\mathrm{n}} 11 / \mathrm{n}>=1\right\}$.
e) For the Grammar $\{\mathrm{S} \rightarrow \mathrm{AS} / \mathrm{a}, \mathrm{A} \rightarrow \mathrm{Sb} \mathrm{A} / \mathrm{SS} / \mathrm{ba}\}$ construct Left most derivation for the string aabbaaa?
f) Define Push Down Automata.
g) What is the purpose of studying Turing Machine?
h) Write a Context free grammar for the language $\left\{0^{n} 1^{n} / n>=1\right\}$.
i) Give an example of un decidable problem.
j) Define Post correspondence Problem.

(50 Marks)
2.a) Construct Minimum state Automata for the following DFA?

* denotes final state

δ	0	1
$\rightarrow \mathrm{Q} 1$	q 2	q 6
q 2	q 1	q 3
$* \mathrm{q} 3$	q 2	q 4
q 4	q 4	q 2
q 5	q 4	q 5
$* \mathrm{q} 6$	q 5	q 4

b) Differentiate between NFA and DFA.

OR

$[6+4]$
3.a) Design DFA for the following over $\{a, b\}$.
i) All strings containing not more than three a's.
ii) All strings that has at least two occurrences of b between any two occurrences of a.
b) Construct a DFA accepting the set of all strings ending with 00 ?

4.a) Define Regular Expression? Explain about the Properties of Regular Expressions.
b) Construct a DFA for the Regular Language consisting of any number of a's and b's.

OR

5.a) Construct a DFA for the Regular expression $(0+1)^{*}(00+11)(0+1)^{*}$.
b) Explain about the identity rules of Regular Expressions.
6.a) Define Ambiguous Grammar. Check whether the grammar.
$\mathrm{S} \rightarrow \mathrm{aAB}, \mathrm{A} \rightarrow \mathrm{bC} / \mathrm{cd}, \mathrm{C} \rightarrow \mathrm{cd}, \mathrm{B} \rightarrow \mathrm{c} / \mathrm{d}$ Is Ambiguous or not?
b) Construct a PDA for the following grammar $S \rightarrow A A / a, A \rightarrow S A / b$.

OR

7.a) Show that for every PDA there exists a CFG such that $L(G)=N(P)$.
b) Convert the grammar $\mathrm{S} \rightarrow 0 \mathrm{AA}, \mathrm{A} \rightarrow 0 \mathrm{~S} / 1 \mathrm{~S} / 0$ to a PDA that Accepts the same Language by Empty Stack.
8.a) Construct a Turing Machine that will accept the Language consists of all palindromes of 0 's and 1's?
b) Explain about types of Turing Machine.

OR
9.a) Obtain GNF for $\mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{BS} / \mathrm{b}, \mathrm{B} \rightarrow \mathrm{SA} / \mathrm{a}$.
b) Design a Turing Machine for $L=\left\{0^{n} 1^{m} 0^{n} 1^{m} / m, n>=1\right\}$.
10.a) Discuss in brief about NP Hard problems.
b) Explain about the Decidability and Undecidability Problems.

OR

11.a) Give an overview of recursively enumerable language.
b) Give the correspondence between P, NP and NP-complete problems.

