	JAWAHA	RLAL NEHRU B.Tech II Yea FORMAL LAI	TECHNOLOG Ir II Semester Ex NGUAGES AND (Common to C	ICAL UNIVE aminations, A AUTOMATA	RSITY HYDEI pril - 2018 A THEORY	RABAI
Time	3 Hours			SE, 11)	M	ax. Ma
Note:	This quest Part A is Part B con carries 10	ion paper contai compulsory v sists of 5 Units marks and may l	ns two parts A and which carries 25 . Answer any one nave a, b, c as sub	B. marks. Answ full question f questions.	er all question from each unit.	ns in Each d
··			PART-	A		(25
1.a)	Define DF	A.				
b)	Write abou	it the application	ns of Finite Autom	nata?		_
c)	If a Regula	ar grammar G is	given by $S \rightarrow aS/a$	Find DFA (M)	accepting L(G))?
d)	Construct a	a regular gramm	ar for $L = \{0^{n}11/n\}$	≥ 1 }.	Laft most land	votion
e)	FOr the G	nammar {S7A	5/a, A 7 50A/55/	Da} construct	Left most deri	vation
f)	Define Pus	sh Down Autom	ata	second second	terret i terret	
g)	What is the	e purpose of stud	lying Turing Mac	hine?		
h)	Write a Co	ontext free gram	nar for the langua	ge $\{0^n 1^n / n > = 1\}$	}.	
i)	Give an ex	ample of un dec	idable problem.			
j)	Define Pos	st correspondenc	e Problem.	: :	: :	
			DADT	P		
···.	d sud			D	said said	(50
2.a)	Construct	Minimum state A	Automata for the f	following DFA	?	
	* denotes	final state		-		
		δ	0		1	
		→ Q1	q2	0	16	
		q2	1	q	3	
••••	A such				. 1	
····	ad said	*q3	q2	C	4	
		*q3 q4	q2 q4		4 2	
·		*q3 q4 q5	<u>q2</u> <u>q4</u> <u>q4</u>	q	2 5	

- 3.a) Design DFA for the following over {a,b}. i) All strings containing not more than three a's. ii) All strings that has at least two occurrences of b between any two occurrences of a. [5+5]
- Construct a DFA accepting the set of all strings ending with 00? b)

	4.a) Definb) Const	e Regular Expression ruct a DFA for the R	1? Explain about egular Language	the Properties of consisting of an	Regular Express y number of a's a	ions. nd b's. $[5+5]$					
			O D			[5+5]					
	5.a) Const b) Expla	 .a) Construct a DFA for the Regular expression (0+1)* (00+11) (0+1)*. b) Explain about the identity rules of Regular Expressions. 									
	6.a) Defin S·	[5+5]									
	0) Const	OR									
	7.a) Show b) Conv by En	 a) Show that for every PDA there exists a CFG such that L(G)=N(P). b) Convert the grammar S→0AA, A →0S/1S/0 to a PDA that Accepts the same by Empty Stack. 									
	8.a) Const 0's ar	ruct a Turing Machi	ne that will acce	pt the Language	consists of all pa	lindromes of					
	b) Expla	in about types of Tu	ring Machine. OR			[5+5]					
	9.a) Obtai b) Desig	n GNF for $S \rightarrow AB$, A n a Turing Machine	$A \rightarrow BS/b$, $B \rightarrow SA$ for $L = \{0^n 1^m 0^n 1^m$	$/a. /m,n \ge 1$ }.		[5+5]					
	10.a) Discu b) Expla	[5+5]									
	11.a) Give	an overview of recur	sively enumerabl	e language.							
	b) Give	the correspondence b	etween P, NP an	d NP-complete p	problems.	[5+5]					
			00O0	0							
		sand sand	and and								