## Time: 3 Hours

Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}$ as sub questions.

> PART - A
(25 Marks)
1.a) Define Kleene Closure and Positive Closure?
b) Define Moore Machine?
c) Define a Regular Expression.
d) Find the simplified regular expression for the following regular expression $r\left(r^{*} r+r^{*}\right)+r^{*}$ ?
e) Define Context Free Grammar.
f) Define Push Down Automata.
g) Define Turing machine.
h) What is Chomsky Normal Form?
i) What is undecidable problem?
j) Compare recursive and recursive enumerable languages.

## PART - B

(50 Marks)
2. Construct NFA with $\varepsilon$ which accepts a language consisting the strings of any number of 0 's followed by any number of 1 's followed by any number of 2 's And also convert into NFA without $\varepsilon$ transitions.

## OR

3. Construct the Moore machine to determine residue mod 3 and convert into Mealy machine.
4.a) Test whether the following two FSM's are equivalent.

| M1 | $\mathbf{0}$ | $\mathbf{1}$ |
| :---: | :---: | :---: |
| $\rightarrow \mathbf{A}$ | B | D |
| (B) | A | C |
| C | D | B |
| (D) | C | A |


| $\mathbf{M} \mathbf{2}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| :---: | :---: | :---: |
| $\rightarrow \mathbf{P}$ | $\mathbf{R}$ | $\mathbf{R}$ |
| $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{P}$ |
| $\mathbf{R}$ | $\mathbf{P}$ | $\mathbf{Q}$ |

b) Apply pumping lemma for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} / \mathrm{n}\right.$ is prime $\}$ and prove that it is not regular?

OR
WWW.manaresults.co.in
5. Construct the regular expression corresponding to the language accepted by following DFA.

6.a) Elaborate on left most derivation and right most derivation.
b) Design Push down Automata for $\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\} 3$.

## OR

7. Construct the CFG for the PDA $M=\left(\left\{q_{0}, q_{1}\right\},\{0,1\},\left\{R, Z_{0}\right\}, \delta, q_{0}, Z_{0}, \Phi\right)$ and $\delta$ is given by
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{0}, \mathrm{RZ}_{0}\right)$
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{R}\right)=\left(\mathrm{q}_{0}, \mathrm{RR}\right)$
$\delta\left(\mathrm{q}_{0}, 0, \mathrm{R}\right)=\left(\mathrm{q}_{1}, \mathrm{R}\right)$
$\delta\left(\mathrm{q}_{1}, 0, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{0}, \mathrm{Z}_{0}\right)$
$\delta\left(\mathrm{q}_{0}, \varepsilon, \mathrm{Z}_{0}\right)=\left(\mathrm{q}_{0}, \varepsilon\right)$
$\delta\left(\mathrm{q}_{1}, 1, \mathrm{R}\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$.
8.a) List out and discuss the closure properties of CFL.
b) Construct CFG without $\varepsilon$ - production from the one which is given below
$\mathrm{S} \rightarrow \mathrm{a}|\mathrm{Ab}| \mathrm{aBa}$
$\mathrm{A} \rightarrow \mathrm{b} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{b} \mid \mathrm{A}$
OR
8. Design a Turing Machine to accept $\mathrm{L}=\left\{\mathrm{WcW}^{\mathrm{R}} \mid \mathrm{W}\right.$ is in $\left.(a+b)^{*}\right\}$.
10.a) Discuss in brief about NP Hard problems.
b) Discuss the examples of undecidable problems.

## OR

11.a) Explain about the undecidable problems about turing machines.
b) Distinguish between class P and class NP Problems.
---00OOo---

