R16

Code No: 134BD

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year II Semester Examinations, December - 2018 FORMAL LANGUAGES AND AUTOMATA THEORY (Common to CSE, IT)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

PART- A				
		(25 Marks)		
1.a)	Define the central concepts of Automata Theory.	[2]		
b)	Write down the applications of finite automata.	[3]		
c)	Construct a regular grammar for $L = \{0^n 11/n \ge 1\}$.	[2]		
d)	Explain the applications of the pumping lemma.	[3]		
e)				
f)	Write short notes on Parse Trees.	[3]		
g)	Construct CFG to generate string with any numbers of 1's.	[2]		
h)	Write about the programming techniques for Turing Machines.	[3]		
i)	Define undecidability. Give an example of an undecidable problems.	[2]		
j)	Write short note on NP-hard problem.	[3]		
PART-B				
		(50 Marks)		
2.a)	Differentiate between NFA and DFA.			
b)	Design DFA for the following over {a, b}			
	i) All strings containing not more than three a's.	2		
	ii) All strings that has at least two occurrences of b between any two occurrences			
	0-	[5+5]		
	OR			
3.a)	Explain the procedure for converting DFA to NFA.			
b)	Briefly discuss about Finite Automata with Epsilon- Transitions.	[5+5]		
4 0)	Define Decular Expression? Explain about the preparties of Decular Expression	an c		
4.a)	Define Regular Expression? Explain about the properties of Regular Expression			
b)	Construct a DFA for the Regular expression $(0+1)^*(00+11)(0+1)^*$. OR	[5+5]		
5.	Design a FA for the following languages			
٥.				
	a) $(0^*1^*)^*$			
	b) (0+1)* 111*			
	c) (0* 11* + 101)	[10]		

6.a) Convert the following grammar to a PDA that accepts the language by empty stack $S \rightarrow 0S1|A$

A → 1A0 |S|€.

b) Show that for every PDA there exists a CFG such that L(G) = N(P).

[5+5]

OR

7.a) Derive left and right most derivations for the input string a=b*c+d/e for the given Grammar.

 $E \rightarrow E + E | E - E | E * E$

 $E \rightarrow E/E$

 $E \rightarrow (E)|id$

- b) Explain the followings with examples.
 - i) Sentential Forms
 - ii) Deterministic Pushdown Automata.

[5+5]

[5+5]

- 8.a) Design a Turing Machine to accept the language $L=\{wcw^R|w\in(a+b)^*\}$.
 - b) Define Chomsky Normal Form (CNF). Convert the following grammar to CNF $S \rightarrow 0S0|1S1| \in$

OR

- 9.a) Explain following:
 - i) Closure properties of Context Free Languages.
 - ii) Decision properties of Context Free Languages.
 - b) Design a Turing machine to recognize all strings consisting of odd numbers of 1's. [5+5]
- 10.a) Write the properties of recursive and non-recursive enumerable languages.
 - b) Let $\dot{\varepsilon} = \{0,1\}$ and A,B be the list of 3 strings each. Verify below PCP has a solution or not? [5+5]

	List A	List B
1	wi	xi
1	00	0
2	001	11
3	1000	011

OR

- 11.a) Give the correspondence between P,NP and NP-complete problems.
 - b) Define post's correspondence problem and show that it is undecidable.

[5+5]

---00O00---