Subject Code: G0501/R13

M. Tech –I Semester Regular Examinations, March, 2014 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CS and CS&E)

Time: 3 Hours

Max Marks: 60

Answer any FIVE questions All questions carry EQUAL marks ****

a) Using a conjunctive normal form, show that q ∨ (p ∧ ~q) ∨ (~p ∧ ~q) is a tautology.

b) Prove the logical equivalence

 $\exists x, [p(x) \rightarrow q(x)] \Leftrightarrow \forall x, p(x) \rightarrow \exists x, q(x)$

- a) Let A={1,2,3,4,5}. Define a relation R on A X A by (x1, y1) R (x2, y2) if and only if x1+y1=x2+y2.
 - b) Let R be a relation on a set A. Prove the following:
 - i) *R* is reflexive if and only if and only if \overline{R} is irreflexive.
 - ii) If R is transitive, so is R^c.
 - ⁱⁱⁱ⁾ If R is reflexive, so is R^c
- 3. a) Find the number of ways of giving 10 apples to 6 persons A,B,C,D,E,F in such a way that the total numbers of apples given to A and B together does not exceed 4.
 b) Illustrate binomial & multinomial theorem. Find the coefficient of x⁹y³ in the expansion of (2x-3y)¹²
- Use generating function to determine the number of four element subsets of S={1, 2, 3, ...15} that contain no consecutive integers.
- 5. Find the BFS and DFS spanning trees for the graph shown below:

6. a) Show that the following graph is Hamiltonian but not Eulerian.

b) What is chromatic number? What are the applications of graph coloring? 1 of 2

ManaResults.co.in

Subject Code: G0501/R13

7. a) Given that $a_0 = 0$, $a_1 = 1$, $a_2=4$ and $a_3=12$ satisfy the recurrence relation i) $a_r + C_1 a_{r-1} + C_2 a_{r-2} = 0$. Determine a_r .

b) Show that $n^3 + 2n$ is divisible by 3 for all $n \ge 1$ by induction.

8. a) Let $(A, +, \bullet)$ be a ring such that $a \bullet a = a$ for all a in A.

i) Show that a+a = 0 for all a, where 0 is the additive identity.

ii) Show that the operation • is commutative.

b) Let (A, *) be a commutative semigroup. Show that if a * a = a and b * b = b, then (a * b)* (a * b) = (a * b).

ManaResults.co.in