III B. Tech I Semester Supplementary Examinations, May - 2019
 COMPILER DESIGN
 (Computer Science and Engineering)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) What is the role of compiler in bootstrapping operation?
b) Write context free grammar for polish notation of arithmetic expressions.
c) Construct parse tree and syntax tree for $4-6 / 3 * 5+7$.
d) Apply translation scheme to generate three-address code $a<b$ or $c<d$.
e) Write in detail about the sub-division of run-time memory.
f) Copy propagation leads to dead-code elimination, justify this with example.

PART -B

2. a) Write short notes on hierarchical and linear analysis operations.
b) Regular expressions are important for lexical analysis? Explain the reason with examples.
3. a) $\mathbf{G}: \mathbf{S} \rightarrow(\mathbf{L})|\mathbf{a} \mathbf{L} \rightarrow \mathbf{L}, \mathbf{S}| \mathbf{R}, \mathbf{R} \rightarrow \mathbf{b}$ for the given grammar find $\mathrm{LR}(0)$ items.
b) For the above grammar G construct LR parsers and explain how shift, reduce accept or reject operations are performed.
4. a) Write a short note on error recovery with LR parsers. How it is different from LL parsers?
b) List and explain the algorithmic steps to construct LALR parser for grammar $\mathbf{S} \rightarrow \mathbf{L}=\mathbf{R}|\mathbf{R L} \rightarrow * \mathbf{R}| \mathbf{i d} \mathbf{R} \rightarrow \mathbf{L}$.
5. a) Explain the role of type checking in error detection and recovery.
b) Write various semantic routines used to construct abstract syntax tree with an example.
6. a) Write pseudocode for finding sum of ' n ' numbers. And identify basic blocks then construct the flow graph for it. Explain the rules used for this.
b) How to access non-local data? Explain implication details with example.
7. Explain the following two classes of local machine independent [14M] transformations
i) Structure preserving transformations
ii) Algebraic transformations.
