Time: 3 hours

SET - 1

Max. Marks: 70

[7M]

III B. Tech I Semester Supplementary Examinations, May - 2019 COMPILER DESIGN

(Computer Science and Engineering)

		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
		PART -A	
1.	a)	What is the role of compiler in bootstrapping operation?	[2M]
	b)	Write context free grammar for polish notation of arithmetic expressions.	[2M]
	c)	Construct parse tree and syntax tree for 4-6/3*5+7.	[2M]
	d)	Apply translation scheme to generate three-address code a <b c<d.<="" or="" td=""><td>[3M]</td>	[3M]
	e)	Write in detail about the sub-division of run-time memory.	[3M]
	f)	Copy propagation leads to dead-code elimination, justify this with example.	[2M]
		PART -B	
2.	a)	Write short notes on hierarchical and linear analysis operations.	[7M]
	b)	Regular expressions are important for lexical analysis? Explain the reason with examples.	[7M]
3.	a)	G: S \rightarrow (L) a L \rightarrow L,S R, R \rightarrow b for the given grammar find LR(0) items.	[7M]
	b)	For the above grammar G construct LR parsers and explain how shift, reduce accept or reject operations are performed.	[7M]
4.	a)	Write a short note on error recovery with LR parsers. How it is different from LL parsers?	[7M]
	b)	List and explain the algorithmic steps to construct LALR parser for grammar $S \rightarrow L = R R L \rightarrow *R id R \rightarrow L$.	[7M]
5.	a)	Explain the role of type checking in error detection and recovery.	[7M]
	b)	Write various semantic routines used to construct abstract syntax tree with an example.	[7M]
6.	a)	Write pseudocode for finding sum of 'n' numbers. And identify basic blocks	[7M]

7. Explain the following two classes of local machine independent [14M] transformations

How to access non-local data? Explain implication details with example.

then construct the flow graph for it. Explain the rules used for this.

i) Structure preserving transformations

ii) Algebraic transformations.

b)
