

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 COMPILER DESIGN

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B (14 Marks) PART –A 1. Differentiate between token, lexeme and pattern with examples. [3M] a) b) Name the three techniques for constructing LR parsing table. [2M] What are the actions performed by Shift reduce parser? [2M] c) Define abstract Syntax tree. d) [2M] Write about the sub-division of run-time memory. [3M] e) List the characteristics of peephole optimization. f) [2M] PART –B (56 Marks) 2. Explain various data structures used for lexical analysis. [7M] a) Discuss in brief about Bootstrapping process with suitable diagram. [7M] b) Define Context Free Grammar. Explain how it is suitable for parsing? 3. a) [7M] Write an algorithm to find LR(0) items and give an example. b) [7M] 4. Design LALR(1) parser for the following grammar: [7M] a) S -> aAd | bBd | aBc |bAc A -> e B -> e where a, b, c, d, e are terminals. Give the SDT scheme for desk calculator. b) [7M] Explain the construction of syntax tree for expressions. 5. [7M] a) Discuss the concept of back patching with an example. b) [7M] What is a flow graph? Explain how flow graph can be constructed for a given 6. [7M] a) program. b) Discuss the advantages and disadvantages of heap storage allocation strategy. [7M] 7. Distinguish between machine dependent and machine independent optimization. a) [7M] Explain the algebraic transformations of local machine independent optimization. b) [7M]

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 COMPILER DESIGN

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer ALL the question in Part-A

3. Answer any FOUR Questions from Part-B

		$\underline{PART} - \underline{A} \tag{1}$	4 Marks)	
1.	a)	Give the types of a language processing system.	[2M]	
	b)	What are the problems in top-down parsers?	[2M]	
	c)	Write the applications of SDTs.	[3M]	
	d)	What is Static Checking? List out some examples of static checks.	[3M]	
	e)	Mention the issues in design of code generation.	[2M]	
	f)	Write the criteria for achieving machine independent code optimization.	[2M]	
	<u>PART –B</u> (56 M			
2.	a)	Define compiler. Describe the phases of a compiler with a neat sketch.	[7M]	
	b)	Explain the recognition of keywords and identifiers with a suitable transition	on [7M]	
	,	diagram.		
3.	a)	Eliminate ambiguities in the following grammar:	[7M]	
		S -> iEtS iEtSeS a		
		$E \rightarrow b c d$		
	b)	Define LR(k) parser. Draw and explain the model of LR parser.	[7M]	
4.	a)	How to detect and reduce handle in LR parsers? Explain.	[7M]	
	b)	Construct LALR parsing table for the following grammar:	[7M]	
		S -> CC		
		$C \rightarrow cC \mid d$		
5.	a)	What is the role of type checking in error detection and error recovery? Explain.	[7M]	
	b)	Give the translation scheme to convert an expression grammar into three addre code.	ess [7M]	
6.	a)	Explain the activities of caller and callee in stack allocation strategy with	an [7M]	
		example. What is the role of parameter passing in it?		
	b)	How to access non-local data? Explain with example.	[7M]	
7.	a)	Discuss about the principal sources of optimization with examples.	[7M]	
	b)	Explain in brief about the DAG based local optimization.	[7M]	

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 **COMPILER DESIGN**

(Computer Science and Engineering)

Time: 3 hours

1.

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A

3. Answer any FOUR Questions from Part-B

(14 Marks) PART –A What are the functions of preprocessor? [2M] a) b) Differentiate between top-down parser and bottom-up parser. [3M] Give the usage of look ahead symbol in LALR parsing. [2M] c) How to generate polish notation using translation schemes? d) [2M] What are the advantages and disadvantages of heap storage allocation strategies [3M] e) for records? f) Write the factors that affects the target code generation. [2M]

<u>PART –B</u> (56 Marks)

2.	a) b)	Describe the functionality of compilers in a typical language processing system. Explain how input buffering helps lexical analyzer in compilation process.	[7M] [7M]
3.	a)	Design a non-recursive predictive parser for the following grammar: S -> AaAb BbBb A -> e	[7M]
	b)	B -> e where a, b, e are terminals. What kinds of source program errors would be detected during lexical analysis? Explain.	[7M]
4.	a) b)	State and explain the rules used to construct the LR(1) items. Discuss the evolution order of SDTs. Also write its applications.	[7M] [7M]
5.	a) b)	What is a three address code? What are its types? How it is implemented? What are the one-pass code generation methods? Explain any one.	[7M] [7M]
6.	a)	Generate the flow-graphs for the following expressions: $S \rightarrow id = E S; S if E then S else S do S while E.$ $E \rightarrow id + id id$	[7M]
	b)	Why garbage collection is important for code optimization? Explain garbage collection by using reference counting.	[7M]
7.	a) b)	Prove that simple code generation algorithms allocate the registers efficiently. Discuss the transformations that are characteristic of peephole optimizations.	[7M] [7M]

["[]"["]"]www.manaresults.co.in

R16

SET - 3

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2019 COMPILER DESIGN

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B PART –A (14 Marks) Define Boot strapping. 1. a) [2M] Give the rules to find the first function. [2M] b) List the properties of LR parser. c) [2M] How is object code different from intermediate code generation? d) [3M] Write the limitations of access links. e) [3M] f) What is peephole? What peephole optimizations can be performed on code? [2M] PART –B (56 Marks) 2. Consider a hypothetical programming language that has only integer and floating a) [7M] point's constants, data declaration and assignment statements. Describe in detail the steps involved in design of lexical analyzer for this language. Describe the need and functionality of linkers, assemblers and loaders. b) [7M] 3. What is an LL(1) grammar? Can you convert every context free grammar into a) [7M] LL(1). Consider the following grammar [7M] b) $E \rightarrow T + E|T$ $T \rightarrow V^*T|V$ V -> id Write down the procedures for the non-terminals of the grammar to make a recursive descent parser. 4. Justify how LALR parsing is efficient over SLR parsing. [7M] a) Write the procedure for eliminating left recursion from SDTs. b) [7M] What is the role of type system in type checker? Write the syntax directed 5. a) [7M] definition for type checker. Explain the steps involved in partitioning a sequence of three address statements b) [7M] into basic blocks. 6. What is runtime stack? Explain the storage allocation strategies used for recursive a) [7M] procedure calls. Discuss about register allocation and assignment in target code generation. [7M] b) 7. a) Explain the structure preserving transformations of local machine independent [7M] optimization. What is Data flow Analysis? Explain its role in code optimization. b) [7M]

["]]"]"]www.manaresults.co.in