Code No: R1632053

III B. Tech II Semester Regular/Supplementary Examinations, October/November - 2020 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours Max. Marks			3: 70	
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B 		
1.	a) b) c) d)	PART –A (14 N) Define the terms: i) Time Complexity ii) Space Complexity. Define the Divide and Conquer Strategy. Write Control Abstraction of Greedy method. Give the statement of the Reliability design problem.	Marks) [2M] [2M] [2M] [3M]	
	e) f)	Define: 1) State-Space tree 11) E – Node and 111) Dead Node. Define: i) LC – Search ii) Branch and Bound (BB). PART – B (56 I	[3M] [2M] Marks)	
2.	a)	What are the different mathematical notations used for algorithm analysis? Explain them.	[7M]	
	b)	Give the algorithm for transpose of a matrix of size mxn and determine the time complexity of the algorithm by frequency – count method.	[7M]	
3.	a)	Explain the Recursive Binary search algorithm with suitable examples.	[7M]	
	b)	Derive the time complexity of the Quicksort algorithm for the worst case.	[7M]	
4.	a) b)	Find an optimal solution to the knapsack instance n=7 objects and the capacity of knapsack m=15. The profits and weights of the objects are (P1,P2,P3,P4,P5,P6, P7)=(10,5,15,7,6,18,3), (W1,W2,W3,W4,W5,W6,W7)=(2,3,5,7,1,4,1) respectively. Discuss the single-source shortest paths algorithm with a suitable example.	[7M] [7M]	
5.	a)	Construct an optimal travelling sales person tour using Dynamic Programming for the given data:	[7M]	
	b)	$ \begin{bmatrix} 0 & 10 & 9 & 3 \\ 5 & 0 & 6 & 2 \\ 9 & 6 & 0 & 7 \\ 7 & 3 & 5 & 0 \end{bmatrix} $ Discuss the time and space complexity of Dynamic Programming traveling sales person algorithm.	[7M]	
6.	a)	Write control abstraction for backtracking.	[7M]	
	b)	Explain the Graph–coloring problem. And draw the state space tree for m= 3 colors n=4 vertices graph. Discuss the time and space complexity.	[7M]	
7.	a)	Write Control Abstraction of Least–Cost(LC) Search.	[7M]	
	b)	Explain the FIFO BB 0/1 Knapsack problem procedure with the knapsack instance for n=4, m=15, $(p_1,p_2,p_3,p_4)=(10,10,12,18)$, $(w_1,w_2,w_3,w_4) =(2, 4, 6, 9)$. Draw the portion of the state space tree and find optimal solution.	[7M]	

["]"]["]["][] www.manaresults.co.in