Code No: R1632053

SET - 1
III B. Tech II Semester Regular/Supplementary Examinations, October/November - 2020 DESIGN AND ANALYSIS OF ALGORITHMS
(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A
(14 Marks)

1. a) Define the terms: i) Time Complexity ii) Space Complexity.
[2M]
b) Define the Divide and Conquer Strategy. [2M]
c) Write Control Abstraction of Greedy method. [2M]
d) Give the statement of the Reliability design problem. [3M]
e) Define: i) State-Space tree ii) E - Node and iii) Dead Node. [3M]
f) Define: i) LC - Search ii) Branch and Bound (BB). [2M]

PART -B

(56 Marks)
2. a) What are the different mathematical notations used for algorithm analysis? Explain
[7M] them.
b) Give the algorithm for transpose of a matrix of size $m \times n$ and determine the time complexity of the algorithm by frequency - count method.
3. a) Explain the Recursive Binary search algorithm with suitable examples.
b) Derive the time complexity of the Quicksort algorithm for the worst case.
4. a) Find an optimal solution to the knapsack instance $n=7$ objects and the capacity of knapsack $\mathrm{m}=15$. The profits and weights of the objects are ($\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4, \mathrm{P} 5, \mathrm{P} 6$, $\mathrm{P} 7)=(10,5,15,7,6,18,3)$, (W1,W2,W3,W4,W5,W6,W7) $=(2,3,5,7,1,4,1)$ respectively.
b) Discuss the single-source shortest paths algorithm with a suitable example.
5. a) Construct an optimal travelling sales person tour using Dynamic Programming for the given data:

$$
\left[\begin{array}{cccc}
0 & 10 & 9 & 3 \\
5 & 0 & 6 & 2 \\
9 & 6 & 0 & 7 \\
7 & 3 & 5 & 0
\end{array}\right]
$$

b) Discuss the time and space complexity of Dynamic Programming traveling sales person algorithm.
6. a) Write control abstraction for backtracking.
b) Explain the Graph-coloring problem. And draw the state space tree for $\mathrm{m}=3$ colors $\mathrm{n}=4$ vertices graph. Discuss the time and space complexity.
7. a) Write Control Abstraction of Least-Cost(LC) Search.
b) Explain the FIFO BB 0/1 Knapsack problem procedure with the knapsack instance for $\mathrm{n}=4, \mathrm{~m}=15$, (p1,p2,p3,p4)=(10,10,12,18), (w1,w2,w3,w4) $=(2,4,6,9)$. Draw the portion of the state space tree and find optimal solution.

