III B. Tech II Semester Supplementary Examinations, November - 2019 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A
(14 Marks)

1. a) What is an Algorithm?
b) Describe the Algorithm Analysis of Binary Search.
c) State the Job - Sequencing with Deadline Problem.
d) Define i) Principles of optimality, ii) Feasible solution, iii) Optimal solution.
e) Define Chromatic number and give the state space tree for 4 - coloring problem.
f) Distinguish between fixed-tuple sized and variable tuple sized state space tree [2M] organization.

PART -B

(56 Marks)
2. a) Give the algorithm for addition of two matrices and determine the time complexity of this algorithm by frequency - count method.
b) Discuss the Pseudo code conventions for expressing algorithms.
3. a) Write Divide - And - Conquer recursive Merge sort algorithm and derive the time complexity of this algorithm.
b) Write the general method of Divide - And - Conquer approach.
4. a) Explain the general principle of Greedy method and also list the applications of Greedy method.
b) What is a Spanning tree? Explain Prim's Minimum cost spanning tree algorithm with suitable example.
5. a) Explain Reliability Design problem with suitable example.
b) Describe the Dynamic 0/1 Knapsack problem. Find an optimal solution for the dynamic programming $0 / 1$ knapsack instance for $n=3, m=6$, profits are $(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3)=(1,2,5)$, weights are $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3)=(2,3,4)$.
6. a) What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle using backtracking algorithm?
b) Discuss the 4 - queen's problem. Draw the portion of the state space tree for $\mathrm{n}=4$ queens using backtracking algorithm.
7. a) Give the $0 / 1$ Knapsack LCBB algorithm. Explain how to find optimal solution using variable - tuple sized approach?
b) Distinguish between backtracking and branch - and bound techniques.

