III B. Tech II Semester Supplementary Examinations, November - 2019 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

	Tin	Time: 3 hours Max. M		
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B		
		•	Marks)	
1.	a)	What is an Algorithm?	[2M]	
	b)	Describe the Algorithm Analysis of Binary Search.	[2M]	
	c)	State the Job – Sequencing with Deadline Problem. Define i) Principles of entirelity ii) Fassible solution iii) Ontimal solution	[2M]	
	d)	Define i) Principles of optimality, ii) Feasible solution, iii) Optimal solution. Define Chromatic number and give the state space tree for 4 – coloring problem.	[3M]	
	e) f)	Distinguish between fixed-tuple sized and variable tuple sized state space tree organization.	[3M] e [2M]	
		$\underline{PART - B} $ (56 Marks)		
2.	a)	Give the algorithm for addition of two matrices and determine the time complexity of this algorithm by frequency – count method.	f [7M]	
	b)	Discuss the Pseudo code conventions for expressing algorithms.	[7M]	
3.	a)	Write Divide – And – Conquer recursive Merge sort algorithm and derive the time complexity of this algorithm.	e [7M]	
	b)	Write the general method of Divide – And – Conquer approach.	[7M]	
4.	a)	Explain the general principle of Greedy method and also list the applications of Greedy method.	/ [7 M]	
	b)	What is a Spanning tree? Explain Prim's Minimum cost spanning tree algorithm with suitable example.	n [7M]	
5.	a) b)	Explain Reliability Design problem with suitable example. Describe the Dynamic 0/1 Knapsack problem. Find an optimal solution for the dynamic programming 0/1 knapsack instance for n=3, m=6, profits are $(p1, p2, p3) = (1, 2, 5)$, weights are $(w1, w2, w3) = (2, 3, 4)$.		
6.	a)	What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle using	g [7M]	
	b)	backtracking algorithm? Discuss the 4 – queen's problem. Draw the portion of the state space tree for $n = 4$ queens using backtracking algorithm.	1 [7M]	
7.	a)	Give the 0/1 Knapsack LCBB algorithm. Explain how to find optimal solution using	g [7M]	
	b)	variable – tuple sized approach? Distinguish between backtracking and branch – and bound techniques.	[7M]	
