III B. Tech II Semester Supplementary Examinations, November-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)
Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

(14 Marks)

1. a) What is an algorithm? Mention its properties.
b) Give an instance, where the quick sort algorithm has worst case time complexity.
c) Write about principle of Optimality.
d) Differentiate 'Divide and Conquer' and 'Dynamic Programming' approaches?
e) Why Backtracking always produces an optimal solution? Justify.
f) What are the searching methods that are commonly used in branch and bound method?

PART -B

(56 Marks)
2. a) Give the algorithm for transpose of a matrix $m \times n$ and determine the time $[7 \mathrm{M}$] complexity of the algorithm by frequency count method.
b) List out the Steps in Mathematical Analysis of Recursive Algorithms.
3. a) Write an algorithm for quick sort based on divide-and-conquer strategy.
b) Write an algorithm based on divide-and-conquer strategy to search an element in a given list. Assume that the elements of list are in sorted order.
4. a) Briefly explain prim's algorithm with an example.
b) Solve the following job sequencing with deadlines problem:

$$
(\mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3, \mathrm{D} 4)=(2,1,2,3) \text { and }(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3, \mathrm{P} 4)=(5,8,6,5)
$$

5. a) Write an algorithm for $0 / 1$ Knapsack problem using Dynamic programming.
b) Solve the following string editing problem:

$$
\begin{gathered}
X=(x 1, x 2, x 3, x 4, x 5)=(a, a, b, a, b) \\
Y=(y 1, y 2, y 3, y 4)=(b, a, b, b) .
\end{gathered}
$$

The cost associated with each insertion and deletion is 1 and the cost of changing any symbol is 2 .
6. a) Explain the process of finding sum of subsets with the following example: [7M] Consider an instance of the problem $\mathrm{W}[1,2,3,4]=[3,4,5,6]$ and $\mathrm{W}=13$.
b) Explain the Graph-coloring problem. And draw the state space tree for $\mathrm{m}=3$ colors $n=4$ vertices graph. Discuss the time and space complexity.
7. a) Give the $0 / 1$ Knapsack LCBB algorithm. Explain how to find optimal solution [7M] using variable - tuple sized approach?
b) Solve the following Traveling salesperson problem by using LCBB?
$\left(\begin{array}{lllll}\infty & 20 & 30 & 10 & 11 \\ 15 & \infty & 16 & 4 & 2 \\ 3 & 5 & \infty & 2 & 4 \\ 19 & 6 & 18 & \infty & 3 \\ 16 & 4 & 7 & 16 & \infty\end{array}\right)$

2 of 2

