SET-1

II B. Tech I Semester Supplementary Examinations, September - 2021 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE
 (Computer Science \& Engineering)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions each Question from each unit
 All Questions carry Equal Marks

1 a) Prove that $[(\mathrm{P} \wedge \neg \mathrm{Q}) \rightarrow \mathrm{R}] \rightarrow[\mathrm{P} \rightarrow(\mathrm{QVR})]$ is a tautology using a truth table.
b) Explain the law of duality with a case study.

Or
2 a) Define free and bound variables and explain the theory of predicate calculus.
b) Show that $(\exists \mathrm{x})[\mathrm{F}(\mathrm{x}) \wedge \mathrm{S}(\mathrm{x})] \rightarrow(\mathrm{y})[\mathrm{M}(\mathrm{y}) \rightarrow \mathrm{W}(\mathrm{y})]$ and $(\exists \mathrm{y})[\mathrm{M}(\mathrm{y}) \wedge-\mathrm{W}(\mathrm{y})]$ derives the Conclusion, $(x)[F(x) \rightarrow-S(x)]$.
3
a) Find the transitive closure for the $\mathrm{R}=\{(1,2),(2,3),(3,4)\}$ on $\mathrm{X}=\{1,2,3,4\}$
b) Demonstrate equivalence relation with a case study.

Or

4 a) Discuss the similarities and dissimilarities between monoid and group.
b) Draw the Hasse diagram for the relation \leq defined as $x \leq y$, if x divided y where $X=\{2,3,6,12,24,36\}$
5
a) State and Prove Fermat's theorem.
b) How many ten digit binary numbers can be formed with (i) exactly five 1's (ii) greater than five 1's.

Or

6 a) Discuss the properties of modular arithmetic with examples.
b) Explain the binomial theorem with an example.

7 a) Calculate the coefficient of X^{15} in
b) Solve the recurrence relation $a_{n}-9 a_{n-1}+26_{n-2}-24 a_{n-3}=0$ for $n \geq 3$ using characteristic polynomial representation.

Or
8 a) Find the Coefficient of X^{23} and X^{32} in $\left(1+X^{5}+X^{9}\right)^{10}$
b) Discuss the importance of methods to solve a recurrence relation.

9 a) Trace the BFS algorithm with a case study.
b) Define a minimum spanning tree and write a procedure to identify a minimum spanning tree for an example graph.
Or

10 a) Discuss the similarities and dissimilarities between Eulerian and Hamiltonian graphs.
b) Define the following terms in graph theory(i) path (ii) cycle (iii) loop
|"||"|"|"||||| WWw.manaresufils.co.in

