[7M]

[7M]

[7M]

[8M]

[7M]

[8M]

[7M]

[8M]

[7M]

R19

III B. Tech I Semester Regular Examinations, February-2022 DATA WAREHOUSING AND DATA MINING

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

- 1. Compare OLAP & OLTP systems. [8M] a)
 - Illustrate indexing methods used for OLAP data. b)

(OR)

- 2. Explain data cube computation. What is the need for partial a) [8M] materialization?
 - Suppose that a data warehouse consists of the three b) dimensions time, doctor and patient, and the two measures count and charge, where charge is the fee that a doctor charges a patient for a visit. Draw a Snowflake schema for this data warehouse. Starting with the base cuboid [day, doctor, patient], what specific OLAP operations should be performed in order to list the total fee collected by each doctor in 2010?

UNIT-II

- Explain the process of knowledge discovery. 3. [8M]a)
 - Discuss applications of data mining. b)

- Summarize visualization techniques. 4. a)
 - b) Illustrate data discretization techniques.

UNIT-III

- 5. Explain apriori algorithm with an example for mining frequent item sets.
 - Explain market basket analysis. b)

(OR)

- Describe how to mine multidimensional association rules. 6. a)
 - Construct an FP-tree for the dataset given below: b)

Tran-ID	List of item_IDs	Tran-ID	List of item_IDs
T_1	I_1, I_2, I_5	T ₆	I_2 , I_3
T_2	I_2, I_4	T_7	I_1, I_3
T ₃	I_2 , I_3	T ₈	I_1, I_2, I_3, I_5
T ₄	I ₁ , I ₂ , I ₄	T ₉	I_1, I_2, I_3
T ₅	I_1, I_3	T ₁₀	I_1, I_2, I_3, I_4, I_5

1 of 2

Code No: R1931051 R19

b)

methods.

UNIT-IV 7. a) Explain basic algorithm for inducing a decision tree from [8M]training samples. b) Distinguish supervised learning from unsupervised learning. [7M] (OR) 8. Explain Naïve Bayesian classification technique with example. a) [8M] b) Distinguish between Lazy learners and Eager learners. [7M] UNIT-V 9. Illustrate K-medoids algorithm. a) [8M] Explain DBSCAN algorithm used for clustering. b) [7M] (OR) Compare hierarchical clustering methods. 10. [8M] a)

SET - 1

[7M]

Explain how to compare the clusterings generated by different

2 of 2