III B. Tech I Semester Supplementary Examinations, Dec/Jan-2022-23 DATA WAREHOUSING AND DATA MINING

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I								
1.	a)	Differentiate between OLAP and OLTP.	[8M]					
	b)	Explain about concept hierarchy with an example.	[7M]					
	(OR)							
2.	a)	Define data warehouse. Give its advantages over databases and mention its characteristics.	[8M]					
	b)	Compare and contrast star schema and snowflake schema.						
	UNIT-II							
3.	3. a) Elaborate the Knowledge discovery process with a neat diagran							
	b) Describe the role of data cleaning and dimensionality reduction in data preprocessing.							
	(OR)							
4.	a)	Focus on various similarity and dissimilarity measures.						
	b)	Outline the concept of principle component analysis.						
	<u>UNIT-III</u>							
5.		Consider the following dataset, find frequent item sets and	[15M]					

Consider	the	following	dataset,	find	frequent	item	sets	and	[15M
generate association rules for them.									

TID	items bought
T100	I1,I2,I5
T200	I2,I4
T300	I2,I3
T400	I1,I2,I4
T500	I1,I3
T600	I2,I3
T700	I1,I3
T800	I1,I2,I3,I5
T900	I1,I2,I3

minimum support count is 2 and minimum confidence is 50%.

(OR)

- 6. a) "Constraint based frequent pattern mining is used for mining in [8M] multi-dimensional space". Justify with an example.
 - b) Write short notes on pattern evaluation methods [7M]

1 of 2

Code No: R1931051 (R19)

(**SET - 1**

_			_	_	_	
Т	ſΝ	П	4	•	T.	₹.
L.	ш			_		v

		<u> </u>	
7.	a)	Outline the concepts of Gain ratio and Gini index.	[8M]
	b)	Explain about Bayes theorem. Give its role in classification.	[7M]
	•	(OR)	
8.	a)	Briefly explain about support vector machines. Give its variants	[8M]
	b)	Discuss about decision tree induction algorithm with an example.	[7M]
	,	UNIT-V	
9.	a)	Discuss about k-medoids algorithm. Compare it with k-means	[8M]
		algorithm	
	b)	Mention the requirements for cluster analysis	[7M]
		(OR)	
10.		What is an outlier? Give its impact on cluster formation. Discuss	[15M]
		about various outlier detection methods.	
