

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

[8M]

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

- 1. a) Define an algorithm. Describe the characteristics of an [7M] algorithm.
 - b) Prove that:

(ii)

- (i) $f(n)+g(n) = O(n^2)$ where $f(n)=3n^2-n+4$ and $g(n)=n \log n+5$
 - f (n) = $4n^2 64n + 288 = \Omega$ (n²).

(OR)

- 2. a) What are bi-connected components? Relate with suitable [7M] examples.
 - b) Define Articulation point. For the following graph, in Fig.1, [8M] identify the articulation points and draw the bi-connected components.

Fig.1

<u>UNIT-II</u>

- 3. a) Write algorithm for abstract Divide and Conquer strategy. Relate [8M] the method to real-time applications.
 - b) Trace the quick sort algorithm to sort the list C, O, L, L, E, G, E [7M] in alphabetical order.

(OR)

- 4. a) Explain in the control abstraction for greedy method. List out [7M] the advantages.
 - b) Prove that, if p1/w1≥, p2/w2≥,.....≥pn/wn, then Greedy [8M] Knapsack generates an optimal solution to the given instance of the Knapsack problem.

<u>UNIT-III</u>

- 5. a) Define and describe Dynamic Programming. Give its [8M] applications.
 - b) How the reliability of a system is determined using dynamic [7M] programming? Explain.

1 of 2

["]]"]"]www.manaresults.co.in

		(OR)				
6.	a)	Explain 0/1 Knapsack problem solution using Dynamic				
		programming.				
	b)	Solve the following instance of $0/1$ Knapsack problem using				
		Dynamic programming n = 3; (W1, W2, W3) = (3, 5, 7); (P1, P2				
		P3) = (3, 7, 12); M = 4.				
		<u>UNIT-IV</u>				
7.	a)	Give the solution to the 8-queens problem using backtracking.				

7.	a)	Give the solution to the 8-queens problem using backtracking.	[8M]			
	,	Draw the state space tree.				
	b)	Describe the algorithm for Hamiltonian cycles and determine the order of magnitude of the worst-case computing time for the	[7M]			
		backtracking procedure that finds all Hamiltonian cycles.				
		(OR)				
8.	a)	Describe about Control Abstractions for LC-search.				
	b)	Explain the principles of	[8M]			
		(i) FIFO branch and Bound, and (ii) LC Branch and Bound				
		<u>UNIT-V</u>				
9.	a)	Explain the satisfiability problem.	[7M]			
	b)	How are P and NP problems related? Give the relation between	[8M]			
		NP-hard and NP problems.				

(OR)

10.	a)	What is String Matching? Give its applications.	[8M]
	b)	Write about Naïve String Matching Algorithm.	[7M]

2 of 2

SET - 1

[8M]

[7M]

R19

SET - 2

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

[7M]

[7M]

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

- 1. a) Write the non-recursive algorithm for finding the Fibonacci [7M] sequence and derive its time complexity.
 - b) Express the following function in Big Oh, Omega and theta [8M] notations: (i) $10n^2+5n$ and (ii) 10logn+6.

(OR)

- 2. a) Present an algorithm for depth first search traversal. Explain with [8M] an example.
 - b) Consider the set of all trees of height h that can be constructed by [7M] a sequence of "union-by-height" operations. How many such trees are there?

<u>UNIT-II</u>

- 3. a) Write the Binary search algorithm and explain.
 - b) Compare Merge sort and Quick sort complexities for the given data [8M] set: {10, 30, 15, 45, 25, 30, 35, 20, 30, 40, 50}.

(OR)

- 4. a) Explain the control abstraction for greedy method. [7M]
 - b) Explain the Job sequencing with dead line algorithm and also find [8M] the solution for the instance n=7, (P1,P2,...,P7)=(3,5,20,18,1,6,30) and (D1,D2,...,D7)= (1,3,4,3,2,1,2).

<u>UNIT-III</u>

- 5. a) Explain Optimal Binary Search tree problem with an example.
 - b) Design an algorithm to find solution for Optimal binary search [8M] tree.

(OR)

- 6. a) Write an algorithm of all pairs shortest path problem using [8M] dynamic programming.
 - b) Find the shortest path between all pairs of nodes in the following [7M] Graph in Fig.1.

1 of 2

["]]"]"]www.manaresults.co.in

SET - 2

UNIT-IV

- 7. a) Explain the basic principle of backtracking and list the [8M] applications of backtracking.
 - b) Explain how backtracking is used for solving n-queen's problem. [7M] Show the state space tree.

(OR)

- 8. a) What is branch and bound? Explain the role of bounding function [8M] in it using LC search.
 - b) Generate FIFO branch and bound solution for the given knapsack [7M] problem. m = 15, n = 3. (P1 P2 P3) = (10, 6, 8), (w1 w2 w3) = (10, 12, 3).

<u>UNIT-V</u>

- 9. a) Write short notes on Cook's theorem. [8M]
 b) Explain non deterministic algorithms. Give some examples. [7M]
 (OR)
 10. a) Write a short note on why KMP algorithm is most efficient [8M] algorithm for string matching.
 - b) What are tries? Explain the algorithm for their formation. [7M]

2 of 2

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

[8M]

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

<u>UNIT-I</u>

- 1. a) Describe the Performance analysis in detail.
 - b) Solve the following recurrence relation using substitution [7M] method:

 $T(n) = 1, n \le 4$ 2T(n) + log n, n > 4

(OR)

- 2. a) What are the disjoint sets? Discuss about various disjoint set [8M] operations.
 - b) Write short notes on Randomized algorithm. [7M]

<u>UNIT-II</u>

- 3. a) Give an algorithm for Merge sort. Derive it's time complexity. [7M]
 - b) Perform merge sort on the array of elements a[1:10] = {310, 285, [8M] 179, 652, 351, 423, 861, 254, 450, 520}. Represent tree of calls for merge sort.

(OR)

- 4. a) Write Kruskal's algorithm to find the maximum spanning tree. [7M]
 - b) Compute a minimum cost spanning tree for the following graph, [8M] shown in Fig.1, using Kruskal's Algorithm:

6 21 11 2 7 08 10 15 (4 11 1 12 17 14 13 8 5 5

Fig.1

<u>UNIT-III</u>

- 5. a) Define and describe Dynamic Programming. Give its [7M] applications.
 - b) Describe the problem of single–source shortest path and give a [8M] solution using dynamic programming.

1 of 2

SET - 3

(OR)

6		Write on Algorithm for 0/1 Knoncools problem using Dynamic	[0]]				
0.	aj	programming					
	b)	Describe the Matrix multiplication chains problem Apply the	[7M]				
	D)	requiring solution of dynamic programming to determine antimal					
		recursive solution of dynamic programming to determine optimal					
		sequence of pair wise matrix multiplications.					
-	,	$\frac{\text{UNIT-IV}}{\text{III}}$					
7.	a)	State and explain the subset sum problem with an example.	[7M]				
	b)	Consider the following Sum of Subsets problem instance: $n = 6$,	[8M]				
		$m = 30$, and $w[1:6] = \{5, 10, 12, 13, 15, 18\}$. Find all possible					
		subsets of w that sum to m. Draw the portion of the state space					
		tree that is generated.					
		(OR)					
8.	a)	State the concept of branch and bound method and also list its	[8M]				
		applications.					
	b)	Write short notes on FIFO and LC branch and bound.					
	,	UNIT-V					
9.	a)	What are differences between NP-Hard and NP-Complete	[8M]				
	,	classes? Explain with examples.					
	b)	Explain any two problems of polynomial time algorithms.	[7M]				
	~)	(OR)	[]				
10.	a)	Explain the Rahin-Karn algorithm What is its complexity?	[8M]				
	b)	What are suffix trees? What are the applications of suffix trees?					
	by what are sum trees: what are the applications of sum trees?						

2 of 2

SET - 4

III B. Tech II Semester Regular Examinations, June-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

Juestions Carry Equal Marks

UNIT-I

- 1. a) What are the various Asymptotic notations? Bring out the [8M] importance of the same with suitable examples.
 - b) What is the time complexity of following function fun ()? Explain [7M] intfun(int n)

```
{
for (inti = 1; i<= n; i++)
{
    for (int j = 1; j < n; j += i)
{
    Sum = Sum +i*j;
}
return(Sum);
}</pre>
```

(OR)

- 2. a) With the help of an algorithm explain the importance of weighted [8M] rule for Union operation? Represent a suitable tree for the same for an example.
 - b) Write about Collapsing rule for Find operation. Give suitable [7M] example.

<u>UNIT-II</u>

- 3. a) Write the General method of Divide–and–Conquer approach. [7M]
 - b) Explain the problem of finding minimum and maximum, and try [8M] to apply 'divide and conquer' strategy to solve it. Give a general algorithm for doing the same.

(OR)

4. a) Write Prim's algorithm to find the maximum spanning tree. [7M]

1 of 2

R19

SET - 4

[7M]

b) Compute a minimum cost spanning tree for the following graph, [8M] in Fig.1, using Prim's Algorithm:

UNIT-III

Fig.1

- 5. a) Explain the methodology of dynamic programming. List the [8M] applications of dynamic programming.
 - b) How the reliability of a system is determined using dynamic [7M] programming? Explain.

(OR)

- 6. a) What is Travelling Sales Person problem? And what are its [7M] applications?
 - b) Find the shortest tour of a TSP for following instance using [8M] Dynamic programming:

	А	В	С	D	
А	0	10	15	20	
В	5	0	9	10	
С	6	13	0	12	
D	8	8	9	0	
UNIT-IV					

- 7. Define the method of backtracking with suitable example. a) [7M] What is graph coloring? Present an algorithm which finds all mb) [8M] colorings of a graph. (OR) 8. State the concept of branch and bound method and also list its a) [8M] applications. Solve the Travelling Salesman problem using branch and bound b) [7M]
 - b) Solve the Travelling Salesman problem using branch and bound [7M] algorithms.

<u>UNIT-V</u>

- 9. a) With a neat diagram, explain the relevance of NP-hard and NP- [8M] complete problems.
 - b) Write about the theory of NP-Completeness.

(OR)

- 10. a) What are tries? Explain the algorithm for their formation. [8M]
 - b) What are suffix trees? What are the applications of suffix trees? [7M]

***** 2 of 2

["]]"]"]]www.manaresults.co.in