

III B. Tech II Semester Supplementary Examinations, November-2022 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

Time: 3 hours

Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

1.	a)	Define time complexity? Explain time complexity of insertion sort in different cases.	[8M]				
	b)	Explain Amortized analysis with example.	[7M]				
		(OR)					
2.	a)	What is biconnected graph? How to determine biconnected components of graph?	[8M]				
	b)	Write the procedures for Union and Find Algorithms.	[7M]				
UNIT-II							
3.	a)	Sort the records with the following index values in the ascending order using quick sort algorithm: 98 12 56 85 22 33 44 88 77.	[8M]				
	b)	Discuss in detail about Divide and Conquer method with suitable examples.	[7M]				
		(OR)					
4.	a)	Explain in detail job sequencing with deadlines problem with example.	[8M]				
	b)	Describe the Knapsack problem using greedy method.	[7M]				
		<u>UNIT-III</u>					
5.	a)	Solve the following $0/1$ Knapsack problem using dynamic programming P = (11, 21, 31, 33), W = (2, 11, 22, 15), C = 40, n = 4.	[8M]				
	b)	Write and explain an algorithm to compute the all pairs shortest path using dynamic programming and prove that it is optimal.	[7M]				
		(OR)					
6.	a)	Discuss the time and space complexity of Dynamic Programming	[8M]				
	b)	traveling sales person algorithm.	[/7]\/[]				
	b)	Explain the matrix chain multiplication with an example. UNIT-IV	[7M]				
7.			[Q]\/[]				
	a)	What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle using backtracking algorithm.	[8M]				
	b)	Explain the Graph-coloring problem. And draw the state space	[7M]				
	~,	tree for $m = 3$ colors $n = 4$ vertices graph. Discuss the time and	[]				

1 of 2

space complexity.

Code	No:	R1932053

SET - 1

(OR)

8.	a)	Explain subset-sum problem and discuss the possible solution	[8M]
		strategies using backtracking.	
	b)	How to search an answer node in branch and bound using Least	[7M]
	,	Cost Search? Explain.	
		<u>UNIT-V</u>	
9.	a)	Compare and contrasts between NP-HARD and NP-COMPLETE.	[8M]
	b)	Briefly explain Cooks-theorem.	[7M]
		(OR)	
10.	a)	Explain The Naive String Matching Algorithm with example.	[8M]
	1 \		 [/==] / []
	b)	Explain about Tries with examples.	[7M]

2 of 2

["]]"]"]"]www.manaresults.co.in