III B. Tech I Semester Regular Examinations, Dec/Jan -2022-23 **DESIGN AND ANALYSIS OF ALGORITHMS**

(Common to CSE (CS), IOTCSIBCT, CSE(IOT), CS)

Tim	ne: 3	hours Max. Mark	s: 70
		Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks ******	
		UNIT-I	
1.	a) b)	Explain in brief about Asymptotic notations with examples. Define Time and Space Complexity, and calculate the time space complexity for addition of two matrices. (OR)	[7M] [7M]
2.	a)	In what way amortized analysis is used for performance analysis of algorithms? Explain.	[7M]
	b)	Explain the method of determining the complexity of a procedure by the step count approach. Illustrate with an example. UNIT-II	[7M]
3.	a)	Write the merge sort algorithm and discuss its efficiency.	[7M]
	b)	Explain the general method of Divide and Conquer.	[7M]
4.	a)	(OR) Write the algorithm for finding pivot element in quick sort algorithm and analyze its time complexity.	[7M]
	b)	Explain How Master's theorem is useful for solving recurrence relations.	[7M]
		<u>UNIT-III</u>	
5.	a)	Explain 0/1 knapsack problem with respect to dynamic programming.	[7M]
	b)	Derive the recursive formulas of optimal cost Binary search tree based on dynamic programming. (OR)	[7M]
6.	a)	Write an algorithm to explain matrix chain multiplication problem.	[7M]
	b)	Explain in detail about Multi stage graphs. UNIT-IV	[7M]
7.	a)	Relate Hamiltonian cycle with travelling sales person problem and also give the backtracking solution that finds all Hamiltonian cycles for any directed or undirected graph.	[7M]
	b)	Draw the portion of state space tree generated by recursive backtracking algorithm for sum of subsets problem with an example. (OR)	[7M]
8.	a)	Explain the Graph – coloring problem. And draw the state space	[7M]
	b)	tree for m= 3 colors and n=4vertices complete graph. b) Define Backtracking. Draw the state space tree for solution of 4-queens problem.	[7M]
		1 - 60	

		<u>UNIT-V</u>	
9.	a)	Give and explain relationship between P, NP, NP complete and	[7M
		NP Hard.	
	b)	Explain Naïve String Matching algorithm and analyze the time	[7M
		complexity.	
		(OR)	
10.	a)	Write notes on deterministic and non-deterministic algorithm	[7M
		with example.	
	h)	State and prove Cook's theorem	[7]/[