Max. Marks: 75

III B.Tech II Semester Supplementary Examinations, April/May- 2019 **POWER SYSTEM ANALYSIS**

(Electrical and Electronics Engineering) Time: 3 hours

> **Answer any FIVE Questions** All Questions carry equal marks

> > ****

1 Discuss and explain the importance of per unit system in power system analysis. a) [5M] Deduce the necessary expression to calculate load impedance in per unit.

Draw an impedance diagram for the electric power system shown below with all b) [10M]impedances in per unit on a 100 MVA base. Choose 20 kV as the base voltage for generator. The three phase power and line ratings are given below.

Component name	MVA rating	kV level	Percent reactance	
G1	90	20	9	
T1	80	20/200	16	
T2	80	200/20	20	
G2	90	18	9	
Line		200 kV	120 Ω	
Load		200 kV	S=48 MW+j64 MVAr	

2 Formulate Y-bus for the following network a)

[7M]

b) Solve the given system of PQ buses other than slack bus using Gauss Seidel iterative [8M] method (With algorithm & Flow chart)

Line data

Element No	From Bus	To Bus	R (p.u)	X (p.u)
1	1	2	0.045	0.13
2	1	3	0.2	0.32
3	2	3	0.15	0.45

Bus data

Bus No	Type	Vi	Delta	P (p.u)	Q (p.u)
1	0	1.05	0	0	0
2	1	1.0	0	0.45	0.22
3	1	1.0	0	-0.98	0.4

- Develop a methodology to solve power flow problem for a n-bus system with [15M] necessary power injections, power mismatches, Jacobian terms, System equations using polar coordinates.
- 4 a) Explain the step by step procedure for building the bus impedance matrix which takes [6M] us from a given bus impedance matrix to a new impedance matrix.
 - b) The bus impedance matrix for the network is shown below is found to be [9M]

$$\mathbf{Z}_{bus} = \begin{bmatrix} j0.183 & j0.078 & j0.141 \\ j0.078 & j0.148 & j0.106 \\ j0.141 & j0.106 & j0.267 \end{bmatrix}$$

The line between buses 1 and 3 with impedance j0.56 is removed by the simultaneous opening of breakers at both ends of the line. Determine the new bus impedance matrix.

- 5 a) Explain about the short circuit capacity (SCC) of a bus in a power system. Deduce the [10M] expression for SCC in terms of base MVA and per unit reactance to the point of fault with necessary mathematics and assumptions.
 - b) Deduce the necessary expressions to perform symmetrical fault analysis using bus [5M] impedance matrix.
- 6 a) Explain the procedure to resolve unbalanced current phasors of a 3-ph system can be [8M] resolved into balanced system of phasors.
 - b) The line to line voltages in an unbalanced three phase supply are [7M] $V_{ab} = 1000 \angle 0^0$; $V_{bc} = 866.0254 \angle -150^0$; $V_{ca} = 500 \angle 120^0$. Determine the symmetrical components for line and phase voltages, then find the phase voltages Van, Vbn, Vcn.
- 7 a) Deduce the necessary expressions to calculate fault current for the following [8M] unsymmetrical faults.
 - i) Single line to ground fault. ii) Double line to ground fault.
 - b) Compare the effect of unsymmetrical faults on power system operation over the [7M] symmetrical faults.
- 8 a) Explain the procedure to calculate steady state stability limit, synchronizing power [8M] coefficient.
 - b) Explain about the different methods to improve steady state and transient stabilities of [7M] power system
