Code No: RT31051 (R13) (SET - 1

III B. Tech I Semester Regular/Supplementary Examinations, October/November- 2017 **COMPILER DESIGN**

(Computer Science and Engineering)

Time: 3 hours	Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)
2. Answering the question in **Part-A** is compulsory
3. Answer any **THREE** Questions from **Part-B**

PART -A

		<u>PARI -A</u>	
1	a) b)	Write the role of preprocessor in language processing. Give an example to eliminate the left recursion with rules.	[3M] [4M]
	c)d)	What is dangling else ambiguity? Give example. Generate three address code for the given pseudo code while $(i <= 100) \{ A = A/B*20; ++i; print(A \ value) \}$	[4M] [4M]
	e) f)	Write the fields and uses of symbol table. For the code given in Q.1(d) generate the basic blocks and write the rules. PART -B	[3M] [4M]
2	a)	What are the different phases of compiler in synthesizing the target program? Explain with an example.	[8M]
	b)	How to recognize various tokens of high level language program? Write the regular expressions and transition diagrams for each.	[8M]
3	a)	How to prove a grammar G: bexpr → bexpr or bterm bterm, bterm → bterm and bfactor bfactor, bfactor → not factor (bexpr) true false is LL(1)?	[6M]
	b)	Construct the LL(1) parse table for the above grammar G.	[10M]
4	a)	Explain the structure of LR parsers. How they are different from LL parsers?	[4M]
	b)	Build LR(0) parser and check the validity of the input string " $id+id*id$ " by the LR(0) parser for the given grammar $E \rightarrow E+T/T$, $T \rightarrow T*F/F$, $F \rightarrow (E)/id$	[12M]
5	a)	What is syntax directed translation? How it is different from translation schemes? Explain with an example.	[8M]
	b)	Translate the given expression into Quadruples, triples and indirect triples $(a+b)*(c+d)+(a*b/c)*b+60$. And list advantages and disadvantages.	[8M]
6	a)	What is reference counting? Explain how they are used in garbage collection.	[8M]
	b)	Efficient Register allocation and assignment improves the performance of object code-Justify this statement with suitable examples.	[8M]
7	a)	Differentiate various techniques used for machine independent and dependent optimizations.	[8M]
	b)	Explain how code motion and frequency reduction used for loop optimizations?	[8M]

Code No: RT31051 (R13) (SET - 2

III B. Tech I Semester Supplementary Examinations, October/November- 2017 COMPILER DESIGN

(Computer Science and Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in **Part-A** is compulsory 3. Answer any THREE Questions from Part-B PART -A a) Write the regular definition for arithmetic expressions. 1 [3M] b) What are the rules for constructing first () function? [4M] c) Discuss the role of Action and Goto functions in LR parser? [4M] d) How to generate polish notation using translation schemes? [4M] e) Write various forms of object code generated in code generation phase. [4M] Give the organization of optimizing compiler. [3M] 2 a) What are the cousins of compiler? Explain their operations in processing high [8M] level language. b) Describe the following i) Reasons for separating scanner and parser [8M] ii) Lexical Errors. 3 a) Prove that the given grammar is ambiguous and eliminate ambiguity in it. [8M] $G: S \rightarrow iEtSeS|iEtS|a, E \rightarrow b|c|d$ b) Construct the recursive descent parser for G: bexpr -bexpr or bterm|bterm, [8M] bterm \rightarrow bterm and bfactor|bfactor, bfactor \rightarrow not factor|(bexpr)|true|false. What are the limitations of it? 4 What is the importance of look ahead symbol in LR(1) parser? Construct the [12M] canonical LR parser for G: $S \rightarrow L = R \mid R, L \rightarrow R \mid id, R \rightarrow L$ b) Explain the rules to check the acceptance of input string: *id=*id [4M] 5 a) Differentiate bottom up and top down evaluation of semantic rules for [8M] arithmetic expressions. b) If (a < b + c *20)[8M] a = a*b - 50{ d = (a/b) + 25; print (a,d) For the given code generate three-address code. a) What is runtime stack? Explain storage allocation strategies used for recursive [8M] procedure calls. b) Can we reuse the symbol table space? Explain through an example. [8M] a) Write the algorithm to generate basic blocks and flow graph for quick sort [8M]algorithm. b) Apply the code optimization techniques on flow graph generated for quick sort. [8M]

Code No: RT31051 (R13) (SET - 3)

III B. Tech I Semester Supplementary Examinations, October/November - 2017 COMPILER DESIGN

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

		<u>PARI -A</u>	
1	a)	Draw the transition diagram for comments.	[3M]
	b)	Write the rules to construct follow() function.	[4M]
	c)	Differentiate LR(0) and LR(1) items.	[4M]
	d)	Write about dependency graphs in syntax directed translations.	[4M]
	e)	What is run time environment? Give the structure.	[3M]
	f)	At what levels code can be optimized by user and compiler? Discuss. PART -B	[4M]
2	۵)	<u> </u>	[10] /[]
2	a)	What do you mean by front end in the compiler design? Show the output produced by it in different stages for $a:=b*c/36$; where a, b and c are real numbers.	[10M]
	b)	Explain the way in which high level languages are processed by interpreter and	[6M]
	U)	compiler.	[OIVI]
3	a)	Check whether the given grammar is LL(1) or not?	[8M]
	1 \	$G: S \rightarrow AalbAclBclbBa, A \rightarrow d, B \rightarrow d$	[O] / []
	b)	With neat sketch explain the structure of non-recursive predictive parser. How to handle errors in it.	[8M]
4	a)	List out and explain the rules to construct simple precedence relation for a	[8M]
		context free grammar.	
	b)	Construct the operator precedence parse table for $E \rightarrow EAEI(E)I-EIid$, $A \rightarrow +I-I*I/I$	[8M]
5	a)	Explain the type system in type checker? Write the syntax directed definition for type checker.	[8M]
	b)	What is syntax directed translation? Write the semantic rules for	[8M]
	0)	$D \rightarrow TL$, $T \rightarrow int real$, $L \rightarrow L$, $id id$	[011]
6		Explain the following:	
	a)	Symbol table organization techniques.	[8M]
	b)	Peephole optimization techniques.	[8M]
7	a)	Write about the techniques in local and global transformations.	[8M]
	b)	What do you mean by inter procedural optimization? Explain with examples.	[8M]
	٠,	The second of more processing of mineral with champion	[]

Code No: RT31051

III B. Tech I Semester Supplementary Examinations, October/November - 2017 **COMPILER DESIGN**

(Computer Science and Engineering)

т:		(Computer Science and Engineering)	. 70
I 1ľ	ime: 3 hours Max. Marks: 70		
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B	
		<u>PART –A</u>	
1	a)	Differentiate the features of linear analysis and hierarchical analysis.	[3M]
	b)	What do you mean by LL(1) grammar? Give example.	[4M]
	c)	What is handle pruning? Give an example.	[4M]
	d)	Write about order of evaluation of semantic rules in syntax directed translation.	[3M]
	e)	How to construct the flow graph for intermediate code?	[4M]
	f)	What is copy propagation and dead code elimination?	[4M]
2	a)	What is the relationship with lexical analyzer, regular expressions and transition diagram? Give an example.	[8M]
	b)	Explain different modules used for language processing.	[8M]
	U)	Explain different modules used for language processing.	[OIVI]
3	a)	What are the preprocessing steps required for predictive parse table construction? Consider the grammar	[8M]
	b)	S \rightarrow ACB CbB Ba, A \rightarrow da BC, B \rightarrow g \varepsilon, C \rightarrow h \varepsilon Construct the predictive parse table for the above grammar. And also check for the validity of the input string of your choice.	[8M]
4		Explain the following:	
	a)	Usage of precedence and association rules to handle shift reduce conflicts in LR parsers.	[6M]
	b)	Error recovery LR parsers	[5M]
	c)	Shift reduce parsing	[5M]
5	a)	What is an Abstract syntax tree? How to construct it using <i>mknode()</i> , <i>mkleaf()</i> functions? Give an example.	[8M]
	b)	What is type expression? How to construct them using various type constructors? Explain.	[8M]
5	a)	What is scope of variable? Write about various ways to access non local variables.	[8M]
	b)	Generate target code from sequence of three address statements using simple code generator algorithm.	[8M]
7	a)	What is machine independent optimization? What are the different techniques used for it.	[8M]
	b)	How to schedule the instructions to produce optimized code? Explain.	[8M]
