III B. Tech I Semester Regular Examinations, November - 2015
 PRINCIPLES OF PROGRAMMING LANGUAGES

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) What constitutes a programming environment?
[3M]
b) What mixed-mode assignments are allowed in C and Java?
c) What is an alias? What are the problems associated with it?
d) What is attribute grammar? Explain how attribute grammar is use for [4M] evaluation of the expressions.
e) What is type inferencing used in ML?
f) What is the difference between checked and unchecked exception in java?

PART - B

2 a) What is the difference between a sentence and a sentential form in a CFG?
b) Explain with an example how the weakest precondition for a logical pretest loop is derived.
c) A concise and understandable description of a programming language is essential to the language's success. Comment on this.
3 a) What are the merits of sub range types?
b) Explain in detail various design issues of character string types.
c) What is a variable and what are the attributes of a variable? Elaborate on address of a variable.
4 a) Discuss the following term:
i) Dangling pointers, ii) Tail recursion elimination.
b) Explain associative arrays, their structure and operations.

5 a) What is the difference between the way original C and C89 deal with an actual parameter whose type is not identical to that of the corresponding formal parameter?
b) Discuss in detail overloaded operators.

6 Discuss how producer-consumer problem and Dining philosopher's problem are solved using concurrency in ADA.

7 a) For what sort of application logic programming is useful? Briefly explain.
b) What are existential queries? Briefly explain.
-000-

III B. Tech I Semester Regular Examinations, November - 2015
 PRINCIPLES OF PROGRAMMING LANGUAGES

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART -A

1
a) What do you mean by a general purpose language? Is C a general purpose language?
b) Give an example of left recursive rule in CFG. What is the significance of left [4M] recursive rule?
c) What do you mean by binding? Give examples of some of the bindings and their binding times.
d) Consider the following C program:
int fun(int _i) \{
*i+=5;
return 4;
\}
void main \{
int $\mathrm{x}=3$;
$\mathrm{x}=\mathrm{x}+\mathrm{fun}$ (\&x)
\}
What is the value of x after assignment statement in main method assuming i. operands are evaluated left to right?
e) What are advantages and disadvantages of dynamic local variables?
f) What is type inferencing used in ML?

PART -B

2 a) Explain the process of compilation in each phase of a compiler.
b) Give some reasons why computer scientists and professional software developers [8M] should study general concepts of language design and evaluation.
a) Discuss about Context-free grammar and regular expression? Give the parse tree of a [8M] following statement: $\mathrm{A}=(\mathrm{B}+\mathrm{C}) *(\mathrm{D} / \mathrm{E})$.
b) Consider the following pseudo code.

Procedure P (A, B: real)
X: real
Procedure Q (B, C: real)
Y: real
Procedure R (A, C: real)
Z: real
... ${ }^{*}$)
Assuming static scope, what is the referencing environment at location marked by $\left({ }^{*}\right)$?

4 a) Explain in detail arrays, indices, subscript bindings, and array categories.
b) What are the problems posed by managing a heap of single-size cell and variable-size cell? Explain in detail various methods for reclaiming garbage.

5 a) Discuss precedence and associativity rules of different programming languages.
b) Explain in detail multiple selection constructs.

6 a) What are the characteristics of co-routine feature? List the languages which allow coroutines.
b) How to implement generic functions in $\mathrm{C}++$?

7 a) Define monitor? Explain how cooperation synchronization and competition [8M] synchronization are implemented using monitors.
b) Write a prolog description of your family tree (based only on facts), going back to [8M] your grandparents and including all descendants. Be sure to include all relationships. -000-

III B. Tech I Semester Regular Examinations, November - 2015 PRINCIPLES OF PROGRAMMING LANGUAGES

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

PART -A

1 a) Differentiate between Hybrid Interpretation and Pure Interpretation.
b) Write short notes on Short Cut evaluation.
c) What are the design issues for exception handling in JAVA?
d) Differentiate In mode and Out Mode parameter passing mechanisms.
e) With respect to the object oriented programming, briefly explain virtual functions.
f) What are the three features of Haskell that makes very different from schema?

PART -B

2 a) What are the main features of the programming paradigm with examples?
b) Define CFG? What does it mean for CFG to be ambiguous?

3 a) (i) Explain Dijkstra's selection construction and loop structure.
(ii) Explain with examples user-located loop control mechanisms provided by various languages.
b) What is meant by type checking? Differentiate between static type checking and dynamic type checking and give their relative advantages.

4 a) Discuss the significance of holes in the records. Why they do and what problem do they cause?
b) Explain the difference between virtual and non-virtual methods.

5 a) Describe three alternative means of allocating co-routine stacks. What are their relative strengths and weaknesses?
b) What is dangling-else problem? Discuss How it can be handled by the [8M] programming language.
6 Explain the following terms :
a) Message passing
b) Concurrency in Ada
c) Monitors.
b) Write a LISP function fib(n) that computes nth Fibonacci number.

III B. Tech I Semester Regular Examinations, November - 2015
 PRINCIPLES OF PROGRAMMING LANGUAGES

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

PART -A

1 a) Briefly write about Virtual Machines.
b) What are the advantages of user-defined data types?
c) How does C support relational and Boolean expressions?
d) Explain with example how operand-evaluation order interacts with functional side effects.
e) Write a short note on 'this' pointer in C++.
f) Explain about LISP interpreter.

PART -B

2 Explain language evaluation criteria and the characteristics that affect them.
3 a) Define syntax and semantics.
b) The levels of acceptance of any language depend on the language description. Comment on this.
c) Define grammars, derivation and a parse tree.

4 a) What are dangling pointers and lost heap-dynamic variables? How are they created?
b) What are the problems posed by managing a heap of single-size cell and variablesize cell? Explain in detail various methods for reclaiming garbage.

5 Discuss about the various attributes of a good language and explain the process of evaluating attributes with example.

6 a) Write an analysis of the similarities and differences between java packages and C++ namespaces.
b) Explain how information hiding in provided in an ADA package.

7 a) Discuss about basic elements of prolog. Give examples.
b) Explain how data abstraction is implemented in ADA.

