

II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2016 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE (Com. to CSE, IT)

Time: 3 hours		3 hours Max. Ma	Max. Marks: 80	
		Answer any FIVE Questions All Questions carry Equal Marks		
1.	a) b)	Obtain equivalent PDNF for the propositional function \sim (P V Q) \leftrightarrow (P Λ Q). Obtain PCNF for the Propositional function (\sim PVQ) \rightarrow (P $\leftrightarrow \sim$ Q).	(8M) (8M)	
2.	a) b)	Show that $P \rightarrow (Q \rightarrow R)$, $Q \rightarrow (R \rightarrow S) \Rightarrow P \rightarrow (Q \rightarrow S)$. Using automatic theorem proving, show that $(P \lor Q) \land (Q \rightarrow R) \land (P \rightarrow M) \Rightarrow (R \lor M)$.	(8M) (8M)	
3.	a) b)	Draw the Hasse diagram for X={2, 3, 6, 24, 36, 48} and relation \leq be such that $x \leq y$, if x divides y. Verify the following relation R on X = {1, 2, 3, 4} is equivalence relation or not? Given R = {(1, 1), (1, 4), (4, 1), (2, 2), (2, 3), (3, 4), (3, 3), (3, 2), (4, 3), (4, 4)}.	(8M) (8M)	
4.	a) b)	Let X = {1, 2, 3, 4} and f : X \rightarrow X such that f = {(1, 2), (2, 3), (3, 4), (4, 1)} and F = {f ₀ , f ₁ , f ₂ , f ₃ }, where f ₁ = f, f ₂ = fOf, f ₃ = f ₂ Of and f0 is identity function. Verify the algebraic system (F, O) is a group, where O is composition of functions. What is a permutation group? Explain with example.	(8M) (8M)	
5.	a) b)	In how many ways can 23 different books be given to 5 students so that 2 of the students will have 4 books each and the other 3 will have 5 books each. Using Multinomial theorem, expand $(2x-3y+4z)^3$?	(8M) (8M)	
6.	a) b)	Solve the recurrence relation a_n - $7a_{n-1}$ + $12a_{n-2}$ = 0 for $n \ge 2$, a_0 =1 and a_1 =2. Solve the recurrence relation of Fibonacci series.	(8M) (8M)	
7.	a) b)	Prove that a connected plane graph with 7 vertices and degree $(V) = 4$ for each vertex V of G must have 8 regions of degree 3 and one region of degree 4. Discuss graph coloring problem with required examples.	(8M) (8M)	
8.	a) b)	Describe an algorithm to decide whether a graph is bipartite. State the Prims algorithm for Finding Minimal Spanning Tree. Explain it with an Example	(8M) (8M)	

WWW.MANARESULTS.CO.IN

|"|""||"|||