# II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2016 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE 

(Com. to CSE, IT)
Time: 3 hours
Max. Marks: 80
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Obtain equivalent PDNF for the propositional function $\sim(P \vee Q) \leftrightarrow(P \wedge Q)$.
b) Obtain PCNF for the Propositional function $(\sim \mathrm{PVQ}) \rightarrow(\mathrm{P} \leftrightarrow \sim \mathrm{Q})$.
2. a) Show that $\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}), \mathrm{Q} \rightarrow(\mathrm{R} \rightarrow \mathrm{S}) \Rightarrow \mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{S})$.
b) Using automatic theorem proving, show that
$(\mathrm{P} V \mathrm{Q}) \Lambda(\mathrm{Q} \rightarrow \mathrm{R}) \Lambda(\mathrm{P} \rightarrow \mathrm{M}) \Rightarrow(\mathrm{R} \mathrm{V} \mathrm{M})$.
3. a) Draw the Hasse diagram for $X=\{2,3,6,24,36,48\}$ and relation $\leq$ be such that $\mathrm{x} \leq \mathrm{y}$, if x divides y .
b) Verify the following relation R on $\mathrm{X}=\{1,2,3,4\}$ is equivalence relation or not?

Given $R=\{(1,1),(1,4),(4,1),(2,2),(2,3),(3,4),(3,3),(3,2),(4,3),(4,4)\}$.
4. a) Let $\mathrm{X}=\{1,2,3,4\}$ and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ such that $\mathrm{f}=\{(1,2),(2,3),(3,4),(4,1)\}$ and
$\mathrm{F}=\left\{\mathrm{f}_{0}, \mathrm{f}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}\right\}$, where $\mathrm{f}_{1}=\mathrm{f}, \mathrm{f}_{2}=\mathrm{fOf}, \mathrm{f}_{3}=\mathrm{f}_{2}$ Of and f 0 is identity function. Verify the algebraic system $(\mathrm{F}, \mathrm{O})$ is a group, where O is composition of functions.
b) What is a permutation group? Explain with example.
5. a) In how many ways can 23 different books be given to 5 students so that 2 of the students will have 4 books each and the other 3 will have 5 books each.
b) Using Multinomial theorem, expand $(2 x-3 y+4 z)^{3}$ ?
6. a) Solve the recurrence relation $a_{n}-7 a_{n-1}+12 a_{n-2}=0$ for $n \geq 2, a_{0}=1$ and $a_{1}=2$.
b) Solve the recurrence relation of Fibonacci series.
7. a) Prove that a connected plane graph with 7 vertices and degree $(\mathrm{V})=4$ for each vertex V of G must have 8 regions of degree 3 and one region of degree 4 .
b) Discuss graph coloring problem with required examples.
8. a) Describe an algorithm to decide whether a graph is bipartite.
b) State the Prims algorithm for Finding Minimal Spanning Tree. Explain it with an Example

