Total No. of Questions—8]

[Total No. of Printed Pages—4+2]

Seat	
No.	

[4757]-1006

S.E. (Civil Engineering) (Second Semester)

EXAMINATION, 2015

CONCRETE TECHNOLOGY

(2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No.
 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Your answers will be valued as a whole.
 - (v) Use of electronic pocket calculator is allowed.
 - (vi) Assume suitable data, if necessary.
 - (vii) Use of IS code 10262, 456 is not allowed.
- 1. (a) What are the minor compounds in Portland cement? What is their role. [6]
 - (b) Explain the physical properties of aggregates affecting workability of concrete. [6]

P.T.O.

2.	(a)	What are the functions of types of admixtures ?	[6]
	(<i>b</i>)	Define creep of the concrete. What are the factors affect	ing
		creep of concrete.	[6]
3.	(a)	State the various types of non-destructive tests carried	on
		hardened concrete. Explain "Impact echo test" for determinat	ion
		of concrete properties.	[6]
	(<i>b</i>)	Describe the types of vibrators used for compaction	of
		concrete.	[6]
		Or	
4.	(a)	Write short notes on:	[6]
		(i) Cellular light weight concrete	
		(ii) Self-compacting concrete.	
	(<i>b</i>)	Define Ferro cement. Explain the basic concepts in form	ing
		ferrocement composites used in the construction industry.	[6]
5 .	Usin	g Indian Standard recommended guidelines, design a concr	ete
	mix	for a reinforced concrete structure to be subjected to the m	ild
	expos	sure conditions for the following requirements : [[13]
	(A)	Stipulations for proportioning:	
		(a) Grade designation : M30	

2

[4757]-1006

(b)	Standard deviation, s = 5	
(c)	Type of cement: OPC 43 grade conforming to IS8:	112
(d)	Workability: 75 mm (slump)	
(e)	Degree of supervision : Good	
(f)	Type of aggregate : Angular coarse aggregate,	
(g)	Maximum cement content : 450 kg/m ³ .	
(B) Te	est data for materials :	
(a)	Specific gravity of cement: 3.15	
(b)	Specific gravity of :	
	(i) Coarse aggregate— 2.74	
	(ii) Fine aggregate— 2.74	
(c)	Water absorption:	
	(i) Coarse aggregates— 0.5%	
	(ii) Fine aggregates— 1.00%	
(d)) Free surface moisture :	
	(i) Coarse aggregates— Nil (absorbed moisture also	nil)
	(ii) Fine aggregates— Nil	-
[4757]-1006		Г.О.

(e) Sieve analysis:

(i) Coarse aggregate:

IS	Analy	Analysis of Percentag		ge	Remarks	
Sieve	Coarse		of different			
Sizes	Aggr	regate	Fractions			
(mm)	Fraction					
	I	II	I	II	Combined	Confirming
			(60%)	(40%)	(100%)	of Table 2
20	100	100	60	40	100	of IS 383
10	0	71.2	0	28.5	28.5	
4.75		9.40		3.7	3.7	
2.36		0				

(ii) Fine aggregate: Conforming to grading zone I

(C) Design considerations:

Table 1: From IS 10262; Maximum water content per cubic meter of concrete:

Sr. No.	Nominal Maximum	Maximum Water
	Size of Aggregate	Content
	(mm)	(kg)
(<i>i</i>)	10	208
(ii)	20	186
(iii)	40	165

[4757] - 1006

Table 2 : From IS 10262; Volume of Coarse Aggregate per Unit Volume of Total Aggregate :

Sr. No.	Nominal Maximum	Volume	e of Coa	arse Agg	regate
	Size of Aggregate	per U	Jnit Vol	ume of	Total
	(mm)	Aggrega	ate for	Different	Zones
(1)	(2)	0:	f Fine	Aggregate	Э
		Zone	Zone	Zone	Zone
		IV	III	II	I
(<i>i</i>)	10	0.50	0.48	0.46	0.44
(ii)	20	0.66	0.64	0.62	0.60
(iii)	40	0.75	0.73	0.71	0.69

Table 3: From IS 456; Different exposure conditions for reinforced concrete :

Sr. No.	Exposure	Minimum	Maximum	Minimum
		cement	free water	grade of
		content	cement	concrete
		(kg/cubic m)	ratio	
(i)	Mild	300	0.55	M20
(ii)	Moderate	300	0.50	M25
(iii)	Severe	320	0.45	M30
(iv)	Very severe	340	0.45	M35
(v)	Extreme	360	0.40	M40

[4757]-1006 5 P.T.O.

6.	(a)	Write major factors affecting mix design. Explain water cement
		ratio. [4]
	(b)	Write a short note on statistical quality control of
		concrete. [4]
	(c)	Explain DOE method of mix design in brief. [5]
7.	(a)	State and explain factors affecting permeability of concrete.
		What measures should be taken to reduce permeability of
		concrete ? [8]
	(b)	Explain in detail corrosion monitoring techniques of reinforce-
		ment and its preventive measures. [5]
		Or
8.	(a)	Write deatiled notes on: [8]
		(i) Sulphate attack on concrete
		(ii) Carbonation of concrete and its determination.
	(b)	What are the symptoms of distress of concrete ? [5]