Total No. of Questions—8]

[Total No. of Printed Pages—4+2

Seat	
No.	

[4757]-1009

S.E. (Civil) (Second Semester) EXAMINATION, 2015

STRUCTURAL ANALYSIS-I

(2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Neat sketches must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
 - (v) Use of electronic pocket calculator is allowed.
 - (vi) Use of cell phone is prohibited in the examination hall.
- (a) A 4 m simply supported beam subjected to clockwise moment
 kNm at mid span, determine maximum slope and deflection
 term of EI.

P.T.O.

(b) Determine moment at B for the continuous beam loaded and supported as shown in the Fig. 1(b) by Clapeyron's theorem.

Fig. 1(b)

Or

- 2. (a) A propped cantilever of span 3 m loaded with uniformly distributed load 10 kN/m on entire span, determine the prop reaction.
 [6]
 - (b) Determine the fixed end moments for the fixed beam loaded and supported as shown in Fig. 2(b). [6]

Fig. 2(b)

3. (a) Find the horizontal deflections of joint C of the truss shown in Fig. 3(a). The area of inclined member is 2000 mm² while the area of horizontal member is 1600 mm². Take $E = 200 \text{ kN/mm}^2$. [6]

Fig. 3(a)

(b) A simply supported beam is loaded and supported as shown in Fig. 3(b). Determine support reaction at A, Shear and moment at C by drawing Influence line diagram.[6]

Fig. 3(b)

[4757]-1009 3 P.T.O.

4. (a) Find forces in members of the truss as shown in Fig. 4(a). Cross-sectional area and material of all members is same.

Fig. 4(a)

(b) Draw the influence line diagram for the members U_2U_3 , L_2L_3 and U_2L_2 of a truss as shown in Fig. 4(b). [6]

Fig. 4(b)

- (a) A three hinge parabolic arch has a span of 24 m and a central rise of 4 m. It carries a concentrated load of 50 kN at 18 m from left support. Determine thrust and radial shear at a section 6 m from left support.
 - (b) Derive the expression for horizontal thrust when a uniformly distributed load w is acting on entire span of two hinged semicircular arch. [6]

Or

- 6. (a) A three hinged circular arch has a span of 40 m and a central rise of 8 m. It carries a uniformly distributed load 20 kN/m over the left-half of span. Find the reaction at the supports and shear at a section 10 m from left support. [7]
 - (b) A two hinged parabolic arch of span 30 m and central rise 4 m is subjected to a point load of 30 kN at the center of the arch. Find the horizontal thrust and moment at 8 m from left hand support.
- 7. (a) State and explain lower bound, upper bound and uniqueness theorem. [5]

[4757]-1009 5 P.T.O.

(b) A beam fixed at both ends is subjected to central point load W. The beam is of uniform plastic moment M_P . Determine the magnitude of collapse load. [8]

Or

- 8. (a) Find the shape factor for circular cross-section of diameter d. [5]
 - (b) Determine collapse load in a propped cantilever of span L subjected to central concentrated load W. [8]