Seat	
No.	

[4957]-1032

S.E. (Electrical) (First Semester) EXAMINATION, 2016 MATERIAL SCIENCE (2012 PATTERN)

Time: Two Hours Maximum Marks: 50

Physical Constants:—

- (1) Angstrom Unit (AU) = 1×10^{-10} metres
- (2) Boltzmann's constant (k) = 1.380×10^{-23} joule.degree-1
- (3) Charge of Electron (e) = 1.601×10^{-19} coulomb
- (4) Mass of electron $(m) = 9.107 \times 10^{-31} \text{ kg}$
- (5) Electron volt (eV) = 1.602×10^{-19} joules
- (6) Mass of Proton (Mp) = $1.627 \times 10^{-27} \text{ kg}$
- (7) Velocity of light $(c) = 2.998 \times 10^8$ m/sec.
- (8) Dielectric constant of free space $(\epsilon_0) = 8.854 \times 10^{-12}$ F/m
- (9) Permeability of freespace $(\mu_0) = 4\pi \times 10^{-7}$ H/m.
- (10) Debye Unit = 3.33×10^{-30} coulomb. metre.
- 1. (a) Derive Clausis-Mossotti relation as applied to dielectric materials in static field. State clearly the assumptions made. [6]
 - (b) Describe various crystal defects. [6]

Or

2. (a) Write note on loss tangent (tan ∂) and negative loss tangent. [6]

P.T.O.

(<i>b</i>)	State properties and applications of: [6]
	(i) Press Board
	(ii) Capacitors
3. (a)	Derive Curie—Weiss law for magnetic materials. [6]
(<i>b</i>)	Write note on Materials used for lamp filament and
	fuses. [7]
	Or
4. (a)	Differentiate between: [6]
	(i) Ferromagnetism and Antiferromagnetism
	(ii) Soft Magnetic Materials and Hard Magnetic Materials.
(<i>b</i>)	A filament of a 220V, 100W lamp is to be manufactured.
	If filament temperature is 2500° at $100W$ dissipation and resistivity
	of the filament material at 20°C is 4.3×10^{-6} ohm-cm and
	α_{20} = 0.005/°C. Calculate the length of the filament at 20°C
	if its diameter at 20°C is 0.022 mm. [7]
5. (a)	What do you mean by Single Electron Transistor (SET) ?
	[6]
(<i>b</i>)	Write a short note on C_{60} . [6]
	Or
6. (a)	What are carbon nanostructures and carbon clusters? [6]
<i>(b)</i>	Discuss briefly, the energy bands in conductors and
	insulators. [6]
[4957]-10	32 2

- 7. (a) Describe the method for measurement of dielectic strength of resins and polymers. [6]
 - (b) Describe measurement of dielectric strength of solid insulating material with reference to IS 2584. [7]

Or

- 8. (a) How will you test transformer oil? Explain it, with a neat diagram of test setup. [7]
 - (b) With neat sketch, explain how flux density is measured with the help of Gauss meter. [6]