[Total No. of Printed Pages—3

Seat	
No.	

[5057]-233

S.E. (Electrical) (First Semester) EXAMINATION, 2016 MATERIAL SCIENCE (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

Physical Constants :-

- (i) Angstrom Unit (AU) = 1×10^{-10} metres
- (ii) Boltzmann's Constant (k) = 1.380×10^{-23} joule.degree⁻¹.
- (iii) Charge on Electron (e) = 1.601×10^{-19} coulomb
- (iv) Mass of Electron (m) = 9.107×10^{-31} kg
- (v) Electron volt (eV) = 1.602×10^{-19} joules
- $(vi) \quad \text{Mass of Proton } (m_p) \ = \ 1.627 \ \times \ 10^{-27} \ \text{kg}$
- (vii) Velocity of light $(c) = 2.998 \times 10^8$ m/sec
- (viii) Dielectric Constant of free space (ϵ_0)

 $= 8.854 \times 10^{-12} \text{ F/m}$

- (ix) Permeability of freespace (μ_0) = $4\pi \times 10^{-7}$ H/m
- (x) Debye Unit = 3.33×10^{-30} coulomb.metre.
- 1. (a) Differentiate three types of polarization namely—electronic, ionic and orientation polarization. [6]
 - (b) Explain various factors which affect breakdown in liquid insulating materials. [6]

P.T.O.

2. ((a)	Define with unit: [6]
		(i) Electric dipole moment
		(ii) Polarization
		(iii) Polarizability.
((b)	State the properties and applications of: [6]
		(i) Porcelain
		(ii) SF ₆ .
3. ((a)	Write a short note on Superconductivity and its
		applications. [6]
((b)	Describe properties and applications of Tungsten and
		Aluminium. [6]
		Or
4. ((a)	Define the following terms along with units if any: [6]
		(i) Residual flux density
		(ii) Coercive force
		(iii) Saturation.
((b)	Write properties and applications of silver and silver alloys. [6]
5. ((a)	Describe with neat diagrams:
0. ((u)	(i) Carbon Fullerene and Nanobud [4]
		(ii) Carbon Vano Tubes. [4]
((b)	Discuss briefly, the energy bands in conductors and
(<i>()</i>	insulators. [5]
[5057]-	.233	2
[0001]	400	4

6.	(<i>a</i>)	What do you mean by Single Walled and Multi Walled	Nano
		Tubes ?	[6]
	(<i>b</i>)	Write a short note on molecular machines.	[7]
7.	(a)	Explain method of finding dielectric strength of air using s	phere
		gap voltmeter with a neat diagram as per IS 2584.	[7]
	(<i>b</i>)	Describe the method for measurement of dielectric str	ength
		of resins and polymers.	[6]
		Or	
8.	(<i>a</i>)	With neat sketch, explain how flux density is measured	with
		the help of Gauss meter.	[6]
	(<i>b</i>)	Explain measurement of dielectric loss angle (tan δ) by Sch	ering
		Bridge as per IS 3585-1994.	[7]