[Total No. of Printed Pages—3 | Seat | | |------|--| | No. | | [5057]-233 ## S.E. (Electrical) (First Semester) EXAMINATION, 2016 MATERIAL SCIENCE (2012 PATTERN) Time: Two Hours Maximum Marks: 50 ## Physical Constants :- - (i) Angstrom Unit (AU) = 1×10^{-10} metres - (ii) Boltzmann's Constant (k) = 1.380×10^{-23} joule.degree⁻¹. - (iii) Charge on Electron (e) = 1.601×10^{-19} coulomb - (iv) Mass of Electron (m) = 9.107×10^{-31} kg - (v) Electron volt (eV) = 1.602×10^{-19} joules - $(vi) \quad \text{Mass of Proton } (m_p) \ = \ 1.627 \ \times \ 10^{-27} \ \text{kg}$ - (vii) Velocity of light $(c) = 2.998 \times 10^8$ m/sec - (viii) Dielectric Constant of free space (ϵ_0) $= 8.854 \times 10^{-12} \text{ F/m}$ - (ix) Permeability of freespace (μ_0) = $4\pi \times 10^{-7}$ H/m - (x) Debye Unit = 3.33×10^{-30} coulomb.metre. - 1. (a) Differentiate three types of polarization namely—electronic, ionic and orientation polarization. [6] - (b) Explain various factors which affect breakdown in liquid insulating materials. [6] P.T.O. | 2. (| (a) | Define with unit: [6] | |-------------|--------------|--| | | | (i) Electric dipole moment | | | | (ii) Polarization | | | | (iii) Polarizability. | | (| (b) | State the properties and applications of: [6] | | | | (i) Porcelain | | | | (ii) SF ₆ . | | 3. (| (a) | Write a short note on Superconductivity and its | | | | applications. [6] | | (| (b) | Describe properties and applications of Tungsten and | | | | Aluminium. [6] | | | | | | | | Or | | 4. (| (a) | Define the following terms along with units if any: [6] | | | | (i) Residual flux density | | | | (ii) Coercive force | | | | (iii) Saturation. | | (| (b) | Write properties and applications of silver and silver alloys. [6] | | 5. (| (a) | Describe with neat diagrams: | | 0. (| (u) | (i) Carbon Fullerene and Nanobud [4] | | | | (ii) Carbon Vano Tubes. [4] | | (| (b) | Discuss briefly, the energy bands in conductors and | | (| <i>()</i> | insulators. [5] | | [5057]- | .233 | 2 | | [0001] | 400 | 4 | | 6. | (<i>a</i>) | What do you mean by Single Walled and Multi Walled | Nano | |----|--------------|---|-------| | | | Tubes ? | [6] | | | (<i>b</i>) | Write a short note on molecular machines. | [7] | | 7. | (a) | Explain method of finding dielectric strength of air using s | phere | | | | gap voltmeter with a neat diagram as per IS 2584. | [7] | | | (<i>b</i>) | Describe the method for measurement of dielectric str | ength | | | | of resins and polymers. | [6] | | | | | | | | | Or | | | 8. | (<i>a</i>) | With neat sketch, explain how flux density is measured | with | | | | the help of Gauss meter. | [6] | | | (<i>b</i>) | Explain measurement of dielectric loss angle (tan δ) by Sch | ering | | | | Bridge as per IS 3585-1994. | [7] |