Seat	
No.	

[4657]-534

S.E. (Electrical) (First Semester) EXAMINATION, 2014 ANALOG AND DIGITAL ELECTRONICS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Your answers will be valued as a whole.
 - (v) Assume suitable data, if necessary.
- 1. (a) Perform the following addition in BCD: [6]
 - (i) $(36)_{10}$ with $(95)_{10}$
 - (ii) $(68)_{10}$ with $(74)_{10}$.
 - (b) Design Mod-6 asynchronous counter using JK flip-flop. [6] Or
- 2. (a) Draw and explain clocked SR flip-flop. Also draw its timing diagram. [6]
 - (b) Use K-map to minimize the following expression in SOP form: [6] $Y = (A + \overline{B} + C + \overline{D}) (\overline{A} + B + \overline{C} + D) (\overline{A} + \overline{B} + \overline{C} + \overline{D}) (\overline{A} + \overline{B} + \overline{C} + D).$

P.T.O.

3.	(a)	Explain the working of OPAMP as a comparator along with
		circuit diagram and input and output waveforms. [7]
	(<i>b</i>)	Explain the operation of low pass filter with a neat circuit
		diagram. [6]
Or		
4.	(a)	Explain the operation of IC555 as a stable multivibrator along with waveforms. [7]
	(b)	Explain grounded type voltage to current converter using OPAMP. [6]
5.	(a)	Draw and explain construction of FET with its characteristics. [6]
	(b)	Draw and explain RC coupled BJT amplifier. [6]
		Or
6.	(a)	Explain AC-DC load line analysis using CE configuration of BJT. [6]
	(b)	Explain push-pull amplifier with a neat circuit diagram. [6]
7.	(a)	Explain the working of single-phase full wave centre tapped rectifier with pure resistive load. Also draw the input and output waveforms. [7]
	(<i>b</i>)	Compare single-phase full wave bridge rectifier with three-phase
		full wave bridge rectifier. [6]

- 8. (a) Draw and explain three-phase bridge rectifier with R-load. Also draw input voltage and output voltage waveforms. [7]
 - (b) A single-phase full wave bridge rectifier is supplied from 230 V, 50 Hz source. The load consists of R = 10 Ω and a large inductance so as to render the load current constant. Determine:
 - (i) Average value of output voltage and output current
 - (ii) Average and r.m.s. values of diode currents
 - (iii) r.m.s. values of output and input currents. [6]