Seat	
No.	

[4857]-1033

S.E. (Electrical) (First Semester) EXAMINATION, 2015 ANALOG AND DIGITAL ELECTRONICS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) All questions are compulsory i.e. (Solve Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8).
 - (iii) Assume suitable data, if necessary.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, pocket calculator and steam table is allowed.
 - (v) Figures to the right indicate full marks.
- **1.** (a) Convert the following numbers:

[6]

- (i) $(754.51)_7$ to hexadecimal
- (ii) $(7BC.A3)_{16}$ to decimal
- (iii) Binary equivalent 110011001010 into its gray code.
- (b) Design MOD-5 synchronous up counter using JK flip-flop. [6]

Or

- 2. (a) Draw and explain 4-bit SISO shift register. [6]
 - (b) Draw the diagram, timing diagram and write the truth table for twisted ring counter. [6]
- **3.** (a) Explain the fixed voltage regulator IC. [6]
 - (b) Explain the working of op-amp as ZCD with waveforms.[7]

P.T.O.

4.	(a)	Explain generation of triangular wave using op-amp. [6]
	<i>(b)</i>	Explain the working of full wave precision rectifier with
		waveforms. [7]
5.	(a)	Draw and explain the construction of FET with its
		characteristics. [6]
	(<i>b</i>)	Explain how the Darlington pair improves the current
		gain. [6]
		Or
6.	(a)	Draw and explain class A amplifier. [6]
	(<i>b</i>)	Explain RC coupled amplifier with neat diagram. [6]
7.	(a)	Explain the working of single-phase full wave rectifier with
		RL load. Draw input and output waveforms. [7]
	(<i>b</i>)	Compare single-phase center tap and bridge rectifiers. [6]
		Or
8.	(a)	A half wave diode rectifier uses transformer turns ration $1:2$
		while the input voltage is 200 sin ωt and $\omega = 100 \pi \text{ rad/sec}$
		and the load resistance is 100Ω . [7]
		Calculate:
		(i) The dc output voltage
		(ii) Rectification efficiency
		(iii) Transformer utilization factor
		(iv) Peak inverse voltage.
	(<i>b</i>)	Draw and explain three-phase half wave rectifier with R load
		with adequate waveforms. [6]