Seat	
No.	

[5057]-236

S.E. (Electrical) (Second Semester) EXAMINATION, 2016

POWER SYSTEM-I

(2012 COURSE)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data if necessary.
- (a) Explain in brief various incentives and penalties offered byMSEDCL to various types of consumers. [6]
 - (b) A string of suspension insulator consists of 4 units. The capacitance between each link pin and earth is 1/10th of the self-capacitance of a unit. The voltage between the line conductor and earth is 100 kV. Find the voltage distribution across each unit and string efficiency. [6]

P.T.O.

- 2. (a) A consumer has an annual maximum demand of 250 kW at 40% load factor. If the tariff is Rs. 100 per kW to maximum demand plus 20 paisa per kWh, then find overall cost per kWh.
 - (b) Explain in brief the necessity and working of the following equipments used in power plant: [6]
 - (i) Protective relays
 - (ii) Power transformers.
- (a) Derive an expression for loop inductance of a single phase-two wire overhead line with conductors separated by distance 'd' meter and radius of each conductor as 'r' meter. [6]
 - (b) Draw the cross-sectional view of single core cable and explain its construction also state the properties of a good insulating material. [7]

Or

- 4. (a) What is meant by transposition of conductor in an overhead line? Calculate the inductance per phase per km of a 33 kV, 50 Hz, three phase, three conductor lines with conductor spacing of 1.4 m and diameter of each conductor 1.5 cm for the following configurations:
 - (i) Equilateral spacing
 - (ii) Horizontal spacing, Assume transposed lines.

[5057]-236

(<i>b</i>)	Derive an expres	ssion for sag	of transmission	line when	supports
	are at unequal	level.			[6]

- 5. (a) Drive an expression for capacitance per phase per km of three phase line when conductors are arranged in the form of equilateral triangle of sides 'd' meter. [6]
 - (b) A 30 km long, single phase 11 kV line has two parallel conductors each 4.5 mm in diameter and 2.5 m apart. The height of conductors above ground is 7 m. Find total capacitance and charging current of line considering effect of earth. [6]

Or

- **6.** (a) Derive an expression for capacitance of single phase transmission line considering effect of earth. [6]
 - (b) Determine capacitance per phase per km and capacitive reactance of 3 phase, 33 kV well transposed line operating at 50 Hz with 1.5 cm diameter conductors arranged at a distance of 1.5 m assuming:
 - (i) Equilateral triangular spacing
 - (ii) Horizontal spacing with transposition
- 7. (a) Classify transmission lines based on voltage, length and line parameters. [7]
 - (b) Explain effect of load power factor on regulation and efficiency. [6]

[5057]-236 3 P.T.O.

- 8. (a) Express the relationship for the sending end voltage and current in terms of receiving end voltage and current for a medium length transmission line with nominal 'T' method of representation. Draw the phasor diagram. [7]
 - (b) A 66 kV, 3-phase, 50 Hz, 150 km long overhead transmission line is open circuited at receiving end. Each conductor has a resistance of 0.25 Ω /km, an inductive reactance of 0.5 Ω /km and has capacitive admittance of 0.04* 10^{-4} S/km. [6]
 - (i) Draw the nominal Π equivalent circuit and indicate the value of each parameter.
 - (ii) Calculate receiving end voltage if sending end voltage is66 kV.