Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	[4757]-1037
No.	[1.0.] 100.

S.E. (Electrical) (Second Semester) EXAMINATION, 2015

ELECTRICAL MACHINES-I

(2012 PATTERN)

Time: Two Hours Maximum Marks: 50

N.B. :— (i) Answer four questions.

- (ii) Neat diagrams must be drawn wherever necessary.
- (iii) Figures to the right indicate full marks.
- (iv) Use of electronic pocket calculator and steam tables is allowed.
- (v) Assume suitable data, if necessary.
- (a) With neat circuit diagrams, explain open circuit and short circuit tests on a single phase transformer for finding the voltage regulation and efficiency.
 - (b) With neat circuit diagram, explain the V-V connection of transformers. State its merits and demerits. [6]

P.T.O.

2.	<i>(a)</i>	Compare the two winding transformer with autotransformer. [3]
	(b)	Comment on various losses taking place in transformer. [3]
	(c)	With neat circuit diagram, explain the Scott connection of
		transformers to convert 3 phase supply into 2 phase
		supply. [6]
3.	(a)	Derive torque equation and speed equation in case of D.C.
		motor. [6]
	(b)	Explain the commutation process and its types in detail. [7]
		Or
4.	(a)	Explain the role of commutator in D.C. motor along with the
		diagram. [7]
	(b)	Explain any two methods of speed control of d.c. shunt
		motor. [6]
5 .	(a)	Explain the production of rotating mmf by 3-phase balanced
		voltage fed to a symmetrical 3-phase winding. [6]
	(b)	Explain power flow stages in case of three phase induction motor
		along with the diagram. [6]

- 6. (a) A 14.71 kW, 4 pole, 50 Hz, 3-phase induction motor has friction and windage losses of 2% of the output power. The full load slip is 4%. Calculate rotor copper loss and output torque. [6]
 - (b) Derive the condition for maximum starting torque in case of induction motor. [6]
- 7. (a) Draw the circuit diagram for conducting (i) No load test and (ii) Blocked rotor test on three phase induction motor. How are its equivalent circuit parameters computed using these tests? [8]
 - (b) Enlist various types of starters for three phase induction motor.

 With neat sketch, explain stator resistance starter along with its merits and demerits.

Or

- 8. (a) Write step by step procedure to draw circle diagram from No Load test and blocked rotor test on three phase induction motor. [7]
 - (b) Write a short note on soft starter for 3-ph induction motor.

[4757]-1037