Total No. of Questions-8]
[Total No. of Printed Pages-4+2

Seat	
No.	

[4757]-1038
S.E. (Electrical Engineering) (Second Semester) EXAMINATION, 2015 NETWORK ANALYSIS
(2012 PATTERN)
Time : Three Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of calculator is allowed.
(v) Assume suitable data if necessary.

1. (a) Simplify the circuit shown in Fig (1) and. Find V_{1} :
[6]

Fig (1)
P.T.O.

WWW.manaresults.co.in
(b) Draw the dotted diagram and Find equivalent reactance as shown in Fig. (2) :

Fig. (2)
Or
2. (a) Find current through 5Ω using Norton's theorem as shown in Fig. (3) :

Fig (3)
(b) Find current through 15Ω by using Millman's theorem. [6]

Fig. (4)
3. (a) For the circuit shown in Fig. (5), find $i(t)$ using classical theory.

Fig. (5)
(b) Find current $i(t)$ by using Laplace transform. The switch is closed at time $t=0$.

Fig. (6)

Or

4. (a) In the circuit shown in Fig. (7), the switch is moved to position

2 at time $t=0$, find the expression of current for time $t>0$ using Laplace transform :

Fig. (7)
(b) Find $i(t)$, by using convolution integral :

$$
\begin{equation*}
\mathrm{F}(s)=\frac{1}{s^{2}+9 s+18} \tag{6}
\end{equation*}
$$

5. (a) For the circuit as shown in Fig. (8), find transmission parameters :

Fig. (8)
(b) For the network shown in Fig. (9) find hybrid parameters : [6]

Fig. (9)
Or
6. (a) In the circuit shown in Fig. (10) find transmission parameters: [6]

Fig. (10)
(b) Develop the relationship between transmission parameter and hybrid parameters.
7. (a) For the network shown in Fig. (11), find the voltage transfer function :

Fig. (11)
(b) Develop the relation of anti-resonant frequency in parallel resonance circuit, also develop the relation of impedance offered by parallel resonant circuit.

Or

8. (a) Find driving point impedance of given network :

Fig. (12)
(b) A high pass filter is constructed from two capacitors 1 micro farad each and 15 millihenry inductance, find design resistance and cut-off frequency.

