\square
[Total No. of Pages : 2]

S.E. 2012 (Electrical)
 (203148-Numerical Methods and Computer Programming) (Semester - II)

Time: 2Hours
Max. Marks : 50
Instructions to the candidates:

1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7or Q8
2) Figures to the right side indicate full marks.
3) Use of Scientific Calculator is allowed.
4) Assume Suitable data if necessary

Q1) a) Write short note on decision making statements and loops in ' C ' language.
b) Find the root of equation $x^{3}+2 x^{2}+10 x-20=0$ that is near 1, using BirgeVieta method, at the end of second iteration.

OR
Q2) a) What are the different data types in ' C ' language? Explain each with their ranges.
b) State and explain Descarte's Rule of sign with example given as $x^{3}+2 x^{2}+$ $10 x-20=0$

Q3) a) Explain Regula-Falsi method to find the root of equation.
b) Use Newton's divided difference interpolation to find polynomial equation to fit following the data points $(0,2),(1,3),(2,12)$ and $(5,147)$

Q4) a) Derive formula of Newton's forward interpolation for equally spaced data points.
b) Find the negative root of $x^{3}-\sin (x)+1=0$ correct to four decimal places using NR method. Take $x_{0}=-2$

Q5) a) Explain Gauss elimination method to solve the system linear simultaneous equations.
b) Find the numerically larger eigen value of the matrix $A=\left[\begin{array}{cc}3 & -5 \\ -2 & 4\end{array}\right]$ by power method taking initial vector as $\binom{1}{1}$.

OR
Q6)
a) Explain Gauss Seidel method to solve the system linear simultaneous equations.
b) Find inverse of matrix $\mathrm{A}=\left[\begin{array}{ccc}8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8\end{array}\right]$ using Gauss Jordan method

Q7) a) Explain Taylor's Series method to solve ordinary differential equations.
b) Solve $\int_{0}^{\pi / 2} \int_{\pi / 2}^{\pi} \cos (x+y) d x d y$ using Trapezoidal rule. Take $h=k=\frac{\pi}{4}$

Q8)
a) Derive formula to Simpson's $\left(\frac{1}{3}\right)^{r d}$ rule using Newton Cote's formula for numerical integration
b) Using $4^{\text {th }}$ order RK method solve $\frac{d y}{d x}=\sqrt{x^{2}+y}$ at $x=0.2$ with $x(0)=0.8$ and $h=0.2$

