Total No. of Questions-8]
[Total No. of Printed Pages-4

Seat
No.
[4757]-1039

S.E. (Electrical) (Second Semester) EXAMINATION, 2015
 NUMERICAL METHODS AND COMPUTER PROGRAMMING

(2012 PATTERN)

Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
(ii) Neat diagrams must be drawn wherever necessary.
(iii) Figures to the right indicate full marks.
(iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
(v) Assume suitable data, if necessary.

1. (a) Give the syntax of 'for loop', 'while loop' and 'do-while loop' in C language.
(b) State Descartes' Rule of sign and apply it to :

$$
x^{4}+2 x^{3}+10 x-20=0
$$

Or

2. (a) What are different data types in 'C' language ? Give their ranges.
[6]
(b) Explain Birge Vieta method to find the root of polynomial equations.
[7]
3. (a) Explain Newton-Raphson method to find the root of equation with its pitfalls.
(b) Use Lagrange's interpolation to find polynomial equation to fit the following data points :
$(0,2),(1,3),(2,12)$ and $(5,147)$
Hence find $y(3)$.

Or

4. (a) Derive formula of Newton's Backward interpolation for equally spaced data points.
(b) Find the root of $x^{2}-49=0$ using bisection method at the end of sixth iteration in interval [5, 8].
5. (a) Explain Gauss-Jordan method to solve the system of linear simultaneous equations.
www.manaresults.co.in
(b) Solve the following system of equations using Gauss Elimination method :
[6]

$$
\begin{gathered}
{\left[\begin{array}{ccc}
8 & -4 & 0 \\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
4
\end{array}\right] .} \\
\text { Or }
\end{gathered}
$$

6. (a) Explain Gauss-Jacobi method to solve the system of linear simultaneous equations.
(b) Solve the following system of equations using Gauss-Seidel method. Initial values $[0,0,0]^{T}$. Show 3 iterations :

$$
\left[\begin{array}{ccc}
8 & -4 & 0 \tag{6}\\
-4 & 8 & -4 \\
0 & -4 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
4
\end{array}\right] .
$$

7. (a) Explain Modified Euler's method to solve ordinary differential equations.
(b) Solve :

$$
\int_{1}^{2} \int_{1}^{2}\left(x^{2}+y^{2}\right) d x d y
$$

using Trapezoidal rule. Take $h=k=1 / 2$.

Or

8. (a) Derive formula for Simpson's (3/8)th rule using Newton-Cote's formula for numerical integration.
(b) Solve :

$$
\frac{d y}{d x}=x+y
$$

for $x=0.2,0.4$ by using Taylor series method.
Given $x_{0}=0, y_{0}=1, h=0.2$.

