Seat	
No.	

[5152]-149

S.E. (Electrical) (II Sem.) EXAMINATION, 2017 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer Q. **1** or Q. **2**, Q. **3** or Q. **4**, Q. **5** or Q. **6** and Q. **7** or Q. **8**.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- (a) What do you understand by entry controlled loop and exit controlled loop? Draw flow chart. Give egs of both the types of loops.
 - (b) Determine the number of possible roots by Descarte's rule of sign for the given example: [6]

$$f(x) = x^4 - 5x^3 - x^2 + 15x - 5 = 0.$$

P.T.O.

2.	(a)	What ar	e differe	nt types	of data	types	in C	language?	Explain
		each wi	th their	ranges.					[6]

- (b) Using normalized floating point perform: [6]
 - (i) (100.312 E 25) + (81.813 E 27)
 - (ii) (100.312 E 25) × (81.813 E 27)
 - (iii) $(0.4546 \text{ E } 3) \times (0.5454 \text{ E } 8).$
- **3.** (a) Explain bisection method to find root of transcendental equation. [6]
 - (b) Apply Newton's forward formula to find f(2.5): [7]

\boldsymbol{x}	f(x)
0	0
5	0.0875
10	0.1763
15	0.2679
20	0.3640
25	0.4663
30	0.5574

Or

4. (a) Find the root of equation $x^2 + 12x + 7$ between (-2, -3) correct upto 4 decimal places using Newton-Raphson method. [6]

[5152]-149

<i>(b)</i>	Fit a	straight	line to	the following	data b	y the principle o	of
	least	squares	for the	following pts	:	[7	7]

\boldsymbol{x}	${oldsymbol y}$
1	0.5
2	2.3
3	2.1
4	4.2
5	3.6
6	5.8
7	5.5

5. (a) Solve the given set of equations by Gauss Seidel method:

$$4x + y + z = 5$$
$$x + 6y + 2z = 19$$
$$-x - 2y + 5z = 10$$

Take $x^0 = y^0 = z^0 = 0$. Show 4 iterations. [7]

(b) Find inverse of the given matrix A by Gauss-Jordan method: [6]

$$A = \begin{bmatrix} 2 & 6 & 6 \\ 2 & 8 & 6 \\ 6 & 2 & 8 \end{bmatrix}.$$

Or

- **6.** (a) Explain how to obtain solution of linear algebraic simultaneous equation by Jacobi method. [6]
 - (b) Find numerically the largest eigen value by power method. Show 5 iterations. [7]

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix} \qquad X_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

[5152]-149 3 P.T.O.

- 7. (a) Derive Euler's formula to solve $\frac{dy}{dx} = f(x, y)$. Also show graphically the effect of reduction of step size in the Euler's method. [6]
 - (b) Evaluate the double integral by Simpson's rule: [6]

$$\int_{0}^{1} \int_{0}^{1} e^{x+y} dx dy$$

Take h = k = 0.5.

Or

8. (a) Compute the integral by trapezoidal rule: [6]

$$\int_{0}^{5} e^{-x^2} dx$$

Take h = 0.5.

(b) Using modified Euler's method, solve: [6]

$$\frac{dy}{dx} = y - x^2 + 1$$

Given $y_0 = 0.5$, $x_0 = 0$. Find y(0.4). Take h = 0.4.