Seat	
No.	

[4857]-1039

S.E. (Electrical) (II Sem.) EXAMINATION, 2015 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer Q. No. **1** or Q. No. **2**, Q. No. **3** or Q. No. **4**, Q. No. **5** or Q. No. **6**, Q. No. **7** or Q. No. **8**.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- **1.** (a) Explain the following instructions used in C languages: [6]
 - (i) printf
 - (ii) scanf
 - (iii) getch.
 - (b) Using synthetic division for $f(x) = 2x^3 6x + 13$, find f(3), f'(3), f''(3), f'''(3). [7]

Or

2. (a) Write short notes on:

[6]

- (i) functions call by value
- (ii) functions call by reference.
- (b) Explain truncation error and round off errors with example. [7]

P.T.O.

- **3.** (a) Find root of $f(x) = x^3 5x 7$ at the end of fifth iteration using secant method. Use interval (1, 2). [6]
 - (b) Explain the Lagrange's interpolation for unequally spaced data. [6]

Or

4. (a) For the following data calculate forward differences and obtain the forward difference polynomial. Interpolate polynomial at x = 0.25. [6]

\boldsymbol{x}	y = f(x)
0.1	1.40
0.2	1.56
0.3	1.76
0.4	2.00
0.5	2.28

- (b) Explain least square approximation method for fitting of curve as a parabola. [6]
- **5.** (a) Find the values of x_1 , x_2 and x_3 , using Gauss Jordan method: [6]

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$

(b) Explain Gauss elimination method for solving simultaneous equations. [6]

6. (a) Solve the following system of equation using Gauss Seidel method upto 5th iteration, assuming x = 3, y = 2, z = 1 [6]

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$

$$6x + 3y + 12z = 35$$

- (b) Explain Gauss-Jacobi method for solution of simultaneous equation. [6]
- 7. (a) Derive Trapezoidal rule for numerical integration as a special case of Newton's Cote formula. [6]
 - (b) Use 4th order RK method to estimate y(0.4) when $y' = x^2 + y^2$ with y(0) = 0. [7]

Or

- 8. (a) Explain Taylor's series method for the solution of ordinary differential equation. [6]
 - (b) Evaluate:

$$\int_{1}^{1.8} \frac{e^x + e^{-x}}{2} \, dx$$

using Simpson's $\left(\frac{1}{3}\right)$ rd rule taking h = 0.2. [7]