[Total No. of Printed Pages—4

Seat	
No.	

[5057]-239

S.E. (Electrical) (Second Semester) EXAMINATION, 2016 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slides rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Explain various loops used in 'C'. Give syntax of each loop. [6]
 - (b) Explain with suitable example Descartes' Rule of Signs. [6]

Or

- **2.** (a) Explain various errors with respect to numerical computation. [6]
 - (b) Using Birge Vieta method, find the real root of the equation:

$$x^4 - 3x^2 + 2x - 7 = 0$$

Perform two iterations. Take $P_0 = 1.3$.

P.T.O.

[6]

3. (a) Using N-R method, obtain the real root of the equation : $\cos x - xe^x = 0.$

Take $x_0 = 1$. Perform 4 iterations. [6]

(b) Using Newton Backward Difference interpolation, find y at x = 12, given that : [7]

\boldsymbol{x}	y
2	94.8
5	87.9
8	81.3
11	75.1
14	82.5

Or

- **4.** (a) Explain Regula Falsi method with suitable diagram. [6]
 - (b) Fit a curve of type

$$y = mx + c,$$

for the following data using Least Square approximation method. [7]

\boldsymbol{x}	y
0.2	0.447
0.4	0.632
0.6	0.775
0.8	0.894
1	1

[5057]-239

2

5.	(a)	Using Gau	ss Jacobi itera	tive method	, obtair	ı solutior	n of system	m
		of linear	simultaneous	equations	given	below.	Perform	5
		iterations					Γ	61

$$4x + y - z = 4$$

 $2x + 3y + z = 4$
 $x + y + 5z = 16$.

Take $x_0 = y_0 = z_0 = 0$.

(b) Using Gauss elimination method solve the following system of linear simultaneous equations: [6]

$$3x - y + 2z = 12$$

 $x + 2y + 3z = 11$
 $2x - 2y - z = 2$.

Or

- **6.** (a) Explain Gauss-Seidel method of solution of system of linear simultaneous equations. [6]
 - (b) Using power method, find the largest eigenvalue for the following matrix: [6]

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$$

Take $[0 \ 1]^T$. Perform 5 iterations.

7. (*a*) Evaluate :

$$\int_{0.2}^{1} \left(1 + x^3\right) dx$$

using Simpson's (3/8)th rule with step size 0.1. [6]

(b) Using 4th order R-K method find y(0.1) given that:

$$y(0) = 1$$
 and $y'(0) = 0$ and

$$\frac{d^2y}{dx^2} = -x\frac{dy}{dx} - y.$$

Take h = 0.1. [7]

[5057]-239 3 P.T.O.

8. (a) Find the first derivative of f(x) at x = 1.5 from the following data: [6]

\boldsymbol{x}	${oldsymbol y}$
1.5	3.375
2.0	7.0
2.5	13.625
3.0	24
3.5	38.875
4.0	59

(b) Evaluate the given integral using Trapezoidal rule.

Take
$$h = 0.2$$
, $k = 0.2$. [7]

$$\int_{1}^{1.4} \int_{2}^{2.4} \frac{1}{xy} dx dy.$$