Total No. of Questions-8]
[Total No. of Printed Pages-4+2
[4657]-542

S.E. (E\&TC/Electronics) (First Semester) EXAMINATION, 2014 SIGNALS AND SYSTEMS

(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Attempt four questions as Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Answer any three questions from each Section.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Use of calculator is allowed.
(vi) Assume suitable data, if necessary.

SECTION I

1. (a) Perform the following operations on the given signal $x(t)$ which is defined as :

$$
x(t)=u(t)-u(t-4)
$$

(i) Sketch $z(t)=x(-t-1)$
(ii) Sketch $y(t)=x(t)+z(t)$.
(b) Determine whether the following signals are Energy or Power, and find energy or time averaged power of the signal : [4]
(i) $x(t)=5 \cos (\pi t)+\sin (5 \pi t) ;-\infty \leq t \leq \infty$
(ii) $x[n]=n, \quad 0 \leq n<5$
$=10-n, \quad 5 \leq n \leq 10$
$=0, \quad$ otherwise
(c) Determine whether the following system is Static/Dynamic, Causal/

Non-causal and Stable/Unstable and justify :

$$
\begin{gather*}
h(t)=e^{-5 t} u(t) . \tag{4}\\
O r
\end{gather*}
$$

2. (a) Compute the convolution integral by graphical method and sketch the output for the following signals :

$$
\begin{align*}
& x(t)=u(t)-u(t-2) \tag{6}\\
& h(t)=e^{-2 t} u(t)
\end{align*}
$$

(b) Evaluate the following integrals :
(i) $\int_{0}^{\infty} t^{2} \delta(t-10) d t$
(ii) $\int_{0}^{10} \delta(t) \sin (2 \pi t) d t$.
(c) Determine whether the following signal is periodic or not, if periodic, find the fundamental period of the signal :

$$
\begin{equation*}
x(t)=\cos ^{2}(2 \pi t) . \tag{2}
\end{equation*}
$$

3. (a) Find the trigonometric Fourier series for the periodic signal $x(t)$ shown in the following figure and sketch the amplitude and phase spectra :

(b) Find the inverse Laplace transform of :

$$
\mathrm{X}(s)=\frac{2}{(s+4)(s-1)}
$$

If the Region of convergence is :
(i) $-4 \leq \operatorname{Re}(s)<1$
(ii) $\operatorname{Re}(s)>1$
(iii) $\operatorname{Re}(s)<-4$.

Or

4. (a) Find the Fourier transform of the following signals :
[6]
(i) $\quad x(t)=\operatorname{sng}(t)$
(ii) $x(t)=u(t)$
(iii) $x(t)=e^{-a t} \sin \left(\omega_{0} t\right) u(t)$.
(b) Find the initial and final value of the following signal : [4]

$$
\mathrm{X}(s)=\frac{2 s+3}{s^{2}+5 s-7}
$$

(c) State the relationship between Fourier transform and Laplace transform.

SECTION II

5. (a) Find the following for the given signal $x(t)$:
[6]
(i) Autocorrelation
(ii) Energy from Autocorrelation
(iii) Energy Spectral Density.

$$
x(t)=e^{-10 t} u(t)
$$

(b) Determine the cross-correlation between two sequences which are given below :

$$
\begin{align*}
& x_{1}(n)=\left\{\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right\} \tag{4}\\
& x_{2}(n)=\left\{\begin{array}{llll}
3 & 2 & 1 & 0
\end{array}\right\}
\end{align*}
$$

(c) State and describe any three properties of Power Spectral Density (PSD).

Or
6. (a) Prove that autocorrelation function and energy spectral density form Fourier transform pair of each other and verify the same for :

$$
\begin{equation*}
x(t)=e^{-10 t} u(t) \tag{9}
\end{equation*}
$$

(b) State and describe any four properties of Energy Spectral Density (ESD).
7. (a) Explain Exponential probability model with respect to its density and distribution function.
(b) Two cards are drawn from a 52 card deck successively without replacing the first :
(i) Given the first one is heart, what is the probability that second is also a heart ?
(ii) What is the probability that both cards will be hearts ?
(c) A coin is tossed three times. Write the sample space which gives all possible outcomes. A random variable X, which represents the number of heads obtained on any double toss. Draw the mapping of S on to real line. Also find the probabilities of X and plot the C.D.F.

Or

8. (a) PDF of a random variable X is :
[6]

$$
\begin{array}{ll}
f_{x}(x)=k e^{-10 x}, & x>0 \text { and } \\
f_{x}(x)=0, & x \leq 0 .
\end{array}
$$

Find :
(i) value of k
(ii) $\mathrm{P}(1 \leq \mathrm{X} \leq 2)$
(iii) $\mathrm{P}(\mathrm{X} \geq 3)$.
(b) State the properties of Cumulative probability distribution function.
(c) Find the mean standard deviation and variance of the uniform random variable.

