Seat	
No.	

[5152]-132

S.E. (E&TC/Electronics) (First Semester) EXAMINATION, 2017 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Attempt Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6, Q. No. 7 or 8.
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Figures to right indicate full marks.
 - (iv) Use of Scientific calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (A) What is thermal runaway? How to overcome thermal runaway in BJT?
 - (B) Determine, A_v , R_i , R_o for the circuit as shown in fig.(1). Assume $h_{fe} = 100 \ h_{ie} = 1.1 \ \text{k}\Omega \ h_{re} = h_{oe} = 0$, $R_1 = 10 \ \text{k}\Omega$, $R_2 = 1 \ \text{k}\Omega \ R_C = 1 \ \text{k}\Omega$, $R_E = 500\Omega$, $C_1 = C_2 = 10\mu\text{F}$, $C_E = 100 \ \mu\text{F}$ and $V_{CC} = 10 \ \text{V}$.

P.T.O.

- **2.** (A) Compare CE, CB and C.C. BJT configurations based on A_v , A_i , R_i and R_o . [6]
 - (B) Determine d.c. operating point parameters for the circuit as shown in Fig. (2). Assume $V_{\rm BE}$ = 0.7 V, $I_{\rm CEO}$ = 0, β_{dc} = 100.[6]

- 3. (A) Plot the frequency response curve for C.E. amplifier and explain the effect of various capacitances on the cut-off frequencies. [6]
 - (B) Draw any one LC oscillator circuit and explain its working by stating its formula for frequency of oscillation. [6] *Or*
- 4. (A) A step response of an amplifier is an shown in the figure (3) at 1 kHz. Calculate f_L , f_H and BW for V_0 = 2.5V V_0' = 1V, t_r = 20 μ s. [6]

[5152]-132

- (B) Compare various feedback amplifiers on the basis of R_i , R_o and gain. [6]
- **5.** (A) Classify large signal amplifiers on the basis of 2 point, collector efficiency and distortions. [6]
 - (B) Draw and explain complementary symmetry push-pull amplifier with neat waveforms. [7]

Or

- 6. (A) In a power amplifier reading for distortions are $D_2=0.14$, $D_3=0.005$ and $D_4=0.003$ with $I_1=3.1$ A for $R_C=R_L=4\Omega$. Then calculate (i) THD (ii) fundamental power component & (iii) total power.
 - (B) For a series fed class-A amplifier as shown in Fig. (4)

Calculate d.c. power, a.c power and efficiency.

Given $V_{CC} = 20$ Volt, $I_{CQ} = 643.5$ mA and $V_o(p-p) = 18$ Volt.

- 7. (A) Draw the constructional diagram of N-channel E-MOSFET and explain with transfer and drain or O/P characteristics. [8]
 - (B) Explain Bi-CMOS with suitable circuit diagram.

Also state its advantages.

[5]

[5152]-132

3

P.T.O.

- **8.** (A) Explain any *two* non-ideal effects in E-MOSFET with suitable diagrams or characteristic curves. [4]
 - (B) Draw small signal a.c. equivalent model of common source configured *n*-channel E-MOSFET. [3]
 - (C) Determine A_v , R_i , R_o for the C.S. amplifier as shown in Fig. (5). Given parameters for E-MOSFET are $g_m=1.41$ mA/V, $V_{Th}=1.5V$ and K=0.5 mA/V². [6]

Fig. 5