Total No. of Questions-8]

Seat	
No.	

[5559]-133

S.E. (E & TC/Electronics) (I Sem.) EXAMINATION, 2019 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time : Two Hours

Maximum Marks : 50

- *N.B.* :- (*i*) Attempt Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6, Q. No. 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (*iii*) Figures to the right indicate full marks.
 - (iv) Use of Calculator is allowed.
 - (v) Assume suitable data, if necessary.
- - (b) The transistor is connected in CE amplifier with by passed $\rm R_E$ has $\rm R_1$ = 50 kΩ. $\rm R_2$ = 2 kΩ, $\rm R_C$ = 1 kΩ, $\rm R_S$ = 1 kΩ. $\rm R_L$ = 10 kW. Also h-parameters h_{ie} = 1.1 kΩ, h_{fe} = 50, h_{oe} = 24 µA/V, h_{re} = 2.5 × 10⁻⁴. Determine the value of $\rm A_v,$ $\rm A_{vs},~A_l,~R_i'.$ [6]

Or

- 2. (a) Explain in detail the three factors which contribute to thermal instability ? [6]
 - (b) Define hybrid parameters of CE configuration of BJT with formulas. Draw its hybrid equivalent circuit for CE configuration. [6]

3. (a) Define and derive expression for f_{α} , f_{β} and f_{T} . [6]

(b) Draw and explain the circuit diagram of Hartley Oscillator using BJT and give expression for frequency of oscillation. [6]

P.T.O.

www.manaresults.co.in

- 4. (a) Draw and explain CE short circuit current gain using Hybrid-π model. [6]
 - (b) In Hartley Oscillator $L_1 = 15$ mH, C = 50 pF. Calculate L_2 , for frequency of 168 kHz. [6]
- 5. (a) Explain the following parameters of power BJT : [6] (i) Safe operating area
 - (ii) Thermal resistance.
 - (b) Draw circuit diagram of class B push pull amplifier and explain its operation with neat waveforms. [7]

Or

- 6. (a) What is crossover distortion ? How is it reduced in complementary symmetry class AB amplifier ? [6]
 - (b) A class B push pull amplifier is supplied with $V_{CC} = 12$ V and load resistance of 5 Ω . If input is sinusoidal, calculate : (i) Maximum power output (ii) Power dissipation in both transistors, (iii) Power dissipation in each transistor, (iv) percentage efficiency. [7]

(b) Explain various non-ideal current voltage characteristics of EMOSFET. [7]

Or

- 8. (a) The parameters of NMOSFET are $k = 0.2 \text{ mA/V}^2$, $\lambda = 0.01 \text{ V}^{-1}$, $V_{\rm T} = 1.2 \text{ V}$. Calculate output resistance for (i) $V_{\rm GS} = 2 \text{ V}$, (ii) $V_{\rm GS} = 4 \text{ V}$. [6]
 - (b) Draw and explain constant current source biasing circuit for EMOSFET. [7]

[5559]-133