Seat No.

[4657]-545

S.E. (E & TC/Electronics) (First Semester) EXAMINATION, 2014 DATA STRUCTURES AND ALGORITHMS

(2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2 and Q. No. 3 or Q. No. 4 and Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Assume suitable data if necessary.
 - (iii) Write output of programs if necessary.
 - (iv) Draw neat diagrams wherever necessary.
- 1. (a) Define recursion with example in detail. [4]
 - (b) Write a function in 'C' to sort numbers using bubble sort. [4]
 - (c) Differentiate between static memory and dynamic memory allocation. [4]

Or

2. (a) Write algorithm to add two polynomials using array of structures. [4]

P.T.O.

	(<i>b</i>)	Define pointers and write function 'swap' to swap two numb	oers
		using pointers.	[4]
	(c)	Explain bitwise operators with example in detail.	[4]
3.	(a)	Differentiate between SLL and DLL.	[4]
	(<i>b</i>)	Write function PUSH to implement stack using array.	[4]
	(c)	Name types of queues. Explain any one in detail.	[4]
		Or	
4.	(a)	Write a function in 'C' to delete a node in SLL.	[4]
	(<i>b</i>)	Explain operation insert in linear queue.	[4]
	(c)	Convert the following infix expression to postfix us	sing
		stack:	[4]
		a + b*(c/d \$ a)/b.	
5 .	(a)	Define BST. Create BST for the following numbers:	[5]
		56, 34, 89, 11, 45, 67, 6, 78.	
		Show preorder traversal.	
	(b)	Explain threaded binary tree with an example.	[4]
	(c)	Define the following terms with example:	[4]
		(i) Strictly binary tree	
		(ii) Completely binary tree.	
		Or	
6.	(a)	Write a function in 'C' to search a number in BST.	[5]
	(b)	For the following numbers create AVL tree:	[4]
		6 5 4 3 2 1.	
	(c)	Explain expression trees with one example.	[4]
[4657]-545	2	

7. (a) Using Dijkstra's algorithm find out shortest path four source node (a) for the given graph: [5]

Fig. 1

(b) Represent the given graph using adjacency matrix: [4]

Fig. 2

(c) Explain Kruskal's algorithm with an example. [4]

[4657]-545 3 P.T.O.

8.	(a)	Explain graph traversal methods with suitable example.	[5]
	(<i>b</i>)	Explain Prim's algorithm with suitable example.	[4]
	(c)	Define with example:	[4]
		(i) Connected graph	
		(ii) Path.	

[4657]-545