Tota	l No.	of Questions : 8] SEAT No. :	
P10	05	[Total No. of Pages : 2	
		[4457]-181	
S.E. (Electronics & Telecommunication) (Semester - I)			
DIGITAL ELECTRONICS			
(2012 Course)			
Time	Time: 2 Hours] [Max. Marks		
Instructions to the candidates:			
	1) 2) 3)	Figures to the right indicate full marks. Neat diagrams must be drawn wherever necessary. Assume suitable data if necessary.	
Q1)	a)	Draw and explain the working of 2 input CMOS NAND gate. [6]	
	b)	Design the following logic expression using single 8:1 multiplexer.	
		$F(A,B,C,D) = \sum m(0,2,3,6,8,9,14) + d(12,13)$ [6]	
		OR	
Q2)	a)	With the neat diagram explain the interfacing of the CMOS as a driver and TTL as a load. [6]	
	b)	Design a 2 bit magnitude comparator using suitable decoder. [6]	
Q3)	a)	Draw and explain the diagram of JK Flip-flop using nand gates and explain how race around condition is avoided? [6]	
	b)	Design a sequence detecter to detect the sequence 101 using Mealy machine. [6]	

OR

Q4) a) Design a pulse train generator to generate the following sequence10110.... using shift register. [6]

b) Explain: [6]

- i) Rules for state assignments.
- ii) State reduction.

Q5) a) Design BCD to Excess-3 code converter using PAL. [8]

b) Explain the difference between PLA and PAL. [5]

P.T.O.

OR

Q6) a) Design the following multiple output function using PLA.

F1(a,b,c,d)=
$$\Sigma$$
 m(3,7,8,9,11,15)
F2(a,b,c,d))= Σ m(3,4,5,7,10,14,15) [7]

- b) Explain the general architecture of CPLD. [6]
- **Q7)** a) Explain the different modelling styles in VHDL with suitable examples.[6]
 - b) Write the VHDL code for a negative edge-triggered 'D' flip-flop with Synchronous active low reset input. [7]

OR

- **Q8)** a) Explain the syntax of the process statement. What are the statements which can be used under the process? [6]
 - b) Write a VHDL code for full subtractor using structural modelling style.[7]

