Total No of Questions: [08]

[Total No. of Pages : 02]

S.E. 2012 (E&TC Engineering) Integrated Circuits (204187) (Semester - II)

Time: 2 Hours Instructions to the candidates: Max. Marks : 50

- 1) Neat diagrams and waveforms must be drawn wherever necessary.
- 2) Figures to the right side indicate full marks.
- 3) Use of Calculator is allowed.

4) Assume Suitable data if necessary.

Q1)	a)	State any four characteristics of an ideal OPAMP?	[02]
	b)	A dual input, balanced-output (DIBO) differential amplifier has following specifications: $R_{C1} = R_{C2} = 2.2 \text{ K}\Omega$, $R_E = 4.7 \text{ K}\Omega$, $R_{in 1} = R_{in 2} = 50 \Omega$, $+V_{CC} = 10V$, $-V_{EE} = -10 \text{ V}$, $\beta_{dc} = \beta_{ac} = 100 \text{ and } V_{BE} = 0.715 \text{ V}$. Calculate i) I_{CQ} ii) V_{CEQ} iii) Voltage gain: A_d	[04]
	c)	Why frequency compensation is required in OPAMP? Explain dominant pole compensation with circuit & frequency response.	[06]
(0)	``	OR	F03 1
Q2)	a) b)	Give the classification of ICs according to number of components per chip? An inverting amplifier using IC741 OPAMP has flat frequency response up to 40 KHz, voltage gain of 10. Find maximum peak – to peak input voltage to get maximum distortion less output?	[02] [04]
	c)	Why level shifter / translator is needed in an OPAMP? What are its different types? Explain level shifter with constant current bias using diodes.	[06]
Q3)	a)	Draw an inverting summing amplifier with three inputs? Derive an expression for its output voltage $V_0 = -(Va + Vb + Vc)$.	[06]
	b)	Draw half wave precision rectifier & explain its operation in brief?	[03]
	c)	Draw an inverting comparator using OPAMP with +ve reference & explain its operation in brief with waveforms?	[03]
		OR	
Q4)	a)	For an inverting Schmitt trigger $R1 = 100\Omega$, $R2 = 56K \Omega$ (where R2 is connected in feedback path). If $Vin = 1V_{(P-P)}$ sine wave and $Vs = \pm 15V$, calculate: i) $V_{UT} \& V_{LT}$	[02]
	b)	Draw & explain in brief an instrumentation amplifier interfaced with RTD bridge for temperature measurement.	[06]
	c)	Draw & explain in brief a sample & hold circuit with waveforms?	[04]
		1	

Q5)	a)	 In a V-I converter with grounded load, Vin = 5V, R = 10KΩ and voltage at noninverting terminal is 1V. Assuming that OPAMP is initially nulled, Calculate: i) Load current ii) The output voltage Vo 	[04]	
	b)	Draw a 2-bit D/A converter with R-2R resistors & explain its operation? State its advantages?	[05]	
	c)	Explain various specifications of A/D converter. OR	[04]	
Q6)	a)	Draw an I-V converter and derive an expression for its output voltage (Vo)?	[04]	
	b)	Draw & explain 2-bit flash type analog to digital converter (ADC)	[05]	
	c)	An 8-bit D / A converter has a resolution of 10 mV / bit. Find the analog output voltage for the following digital inputs:	[04]	
		i) 10001010 ii) 00010000		
Q7)	a)	Draw the block schematic of PLL and explain each block in detail.	[07]	
	b)	Design an adjustable voltage regulator using LM317 for following specifications: Output voltage, $Vo = 5V$ to 12V	[04]	
		Output current, $Io = 1A$ and $R1 = 240\Omega$ (R1 is connected between o/p terminal & adj terminal).		
	c)	Explain the following terms:	[02]	
		i) Load regulation		
		ii) Line regulation		
OR				
Q8)	a)	For a PLL 565, the free running frequency is 2.5KHz, $+Vcc = +10V$, $-V_{EE} = -10V$. If demodulation capacitor (C2) is 10µF, find lock range & capture range.	[04]	
	b)	State applications of PLL? Also draw block diagram of FSK demodulator.	[05]	

c) Draw & explain a three terminal voltage regulator with current boosting. [04]

2