Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[4757]-1046

S.E. (E&TC/Electronics Engineering) (Second Semester)

EXAMINATION, 2015

INTEGRATED CIRCUITS

(2012 PATTERN)

Time: Two Hours Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4,
 Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of calculator is allowed.
 - (iv) Assume suitable data if necessary.
- 1. (a) Draw the block diagram of op-amp and explain the function of each block in detail. [6]
 - (b) Compare different types of op-amp technologies. [3]
 - (c) Explain the effect of temperature on: [3]
 - (i) Input Bias Current
 - (ii) Input Offset Voltage
 - (iii) Input Resistance.

P.T.O.

- 2. (a) Find the Q-point V_C and I_B for dual input balanced output differential amplifier when, $R_E = R_C = 65 \text{ k}\Omega$. [6] Assume $I_E = I_C$, $\beta = 100$ for both transistors Q_1 and Q_2 ; $V_S = \pm 12 \text{ V}$.
 - (b) What is the need of frequency compensation? Explain any one method of frequency compensation. [6]
- 3. (a) Design a lossy integrator with square wave input of $2~V_{p-p}$ and 5~kHz frequency. Draw input and output waveforms. [6]
 - (b) Explain with a neat circuit diagram working of symmetric Schmitt trigger using op-amp. Also derive the equation for the trigger points.

Or

4. (a) Design an adder using op-amp to get output expression as: [6]

$$V_0 = - (2V_1 + 3V_2 + 5V_3)$$

Where V_1 , V_2 and V_3 are inputs.

- (b) Draw and explain square wave generator using op-amp. [6]
- **5.** (a) With a neat circuit diagram, explain voltage to frequency converter. [5]
 - (b) Write a short note on Binary weighted Digital to Analog Converter (DAC). [5]

[4757]-1046

((<i>c</i>)	What output voltage would be proudeed by a D/A converter
		whose output range is 0 to 10 V and input binary number
		is: [3]
		(i) 10 (for a 2-bit DAC converter)
		(ii) 0110 (for a 4-bit DAC)
		(iii) 10111100 (for a 8-bit DAC).
		Or
6. (a	a)	Write a short note on Flash type Analog to Digital
		Converter. [5]
(1	<i>b</i>)	What are the different types of V to I converter. Explain
		any one. [5]
(0	c)	List various specifications of ADC. [3]
7. (a	a)	With the help of neat block diagram explain operation
		of PLL. [5]
(1)	<i>b</i>)	What is the need of current boosting circuit ? Explain with
		the help of any <i>one</i> circuit. [5]
(0	c)	Draw block diagram of frequency multiplier. Draw input-output
		waveforms. [3]
[4757]-1	1046	3

- 8. (a) For PLL circuit shown in Fig. 1, calculate the following: [6]
 - (i) Free running frequency
 - (ii) Lock range
 - (iii) Capture range.

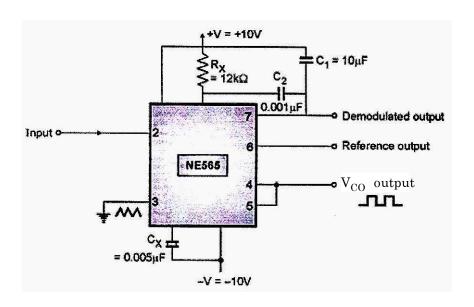


Fig. 1

- (b) Write a short note on practical voltage regulator using LM317. [5]
- (c) Explain the following terms: [2]
 - (i) Load Regulation
 - (ii) Line Regulation.