Seat	
No.	

[5352]-136

S.E. (E&TC/Elect.) (II Sem.) EXAMINATION, 2018 INTEGRATED CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.
- Q.1 (a) Draw the block diagram of op-amp and explain the function of each block in [04] detail.
 - (b) Define the following op-amp parameters.

[04]

- 1) Slew rate
- 2) CMRR
- 3) Input offset voltage
- 4) PSRR
- (c) State and compare different op-amp technologies.

[04]

OR

- Q.2 (a) What is the need of frequency compensation? Explain any one method of [06] external frequency compensation.
 - (b) The dual input balanced output difference amplifier has following specifications. [06] $R_{C} = 2.5k\Omega, \ R_{E} = 4.8k\Omega, \ R_{b1} = R_{b2} = R_{b} = 50\Omega, \ +V_{CC} = +10V, \ -V_{EE} = -10V, \ \beta = 100,$ $V_{BE} = 0.8V. \ Assume \ h_{ie} = 1.1k\Omega. \ Calculate:$
 - 1) Q-point values
 - 2) Voltage gain
 - 3) Input & Output Resistance

P.T.O.

- Q. 3 (a) Why ideal integrator is required to be modified? Draw the practical integrator [06] and explain its operation with frequency response.
 - (b) Draw and explain precision half wave rectifier circuit using op-amp. [04]
 - (c) List out the characteristics of a typical/good instrumentation amplifier. [02]

OR

Q.4 (a) For the Inverting Schmitt trigger shown below, Calculate UTP, LTP & hysteresis [06] width. Draw input & output waveforms. Also comment on Hysteresis loop.

- (b) Draw a neat circuit diagram of two inputs inverting summing amplifier using [06] op-amp & obtain expression for output voltage.
- Q. 5 (a) Draw the circuit diagram and explain working of voltage mode R-2R ladder DAC. [05]
 - (b) Explain grounded load V to I converter with necessary derivation. [04]
 - (C) Explain current to voltage converter using Op-amp. [04]

OR

- Q. 6 (a) Write a note on 2 bit Flash type analog to digital converter (ADC). [06]
 - (b) A 5 bit R-2R ladder network with reference voltage of 10V. Find [07]
 - 1) Analog output due to LSB change.
 - 2) Full scale output voltage
 - 3) Analog output for digital input 11001
- Q. 7 (a) Explain the operation of PLL using a neat block diagram. Define the terms Centre [06] frequency and capture time related to PLL.

	(b)	Explain low drop-out regulator.	[04]
	(c)	Explain frequency multiplier using PLL.	[03]
	OR		
Q. 8	(a)	Calculate output frequency f_o , lock range and capture range of PLL if the timing parameters are C_T =0.1 μ f, R_T =1 $k\Omega$. The filter capacitor is 10 μ f.	[06]
	(b)	Draw a neat diagram and explain three terminal adjustable voltage regulator with expression for output voltage.	[07]