Total No. of Questions-8]
[Total No. of Printed Pages-6

[5352]-105

ENGINEERING MATHEMATICS-III
(2012 PATTERN)
Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Figures to the right indicate full marks.
(iii) Non-programmable electronic pocket calculator is allowed.
(iv) Assume suitable data, if necessary.
(v) Neat diagrams must be drawn wherever necessary.

1. (a) Solve any two of the following :
(i) $\left(\mathrm{D}^{2}+9\right) y=x^{2}+2 x-\cos 3 x$
(ii) $\left(x^{2} \mathrm{D}^{2}+5 x \mathrm{D}+3\right) y=\frac{\log x}{x^{2}}$
(iii) $\quad\left(\mathrm{D}^{2}-4 \mathrm{D}+4\right) y=e^{2 x} \sec ^{2} x$.
(By method of variation of parameters.)
(b) Solve the following system of equation by Gauss-Seidel Iteration Method :

$$
\begin{aligned}
10 x_{1}+x_{2}+x_{3} & =12 \\
2 x_{1}+10 x_{2}+x_{3} & =13 \\
2 x_{1}+2 x_{2}+10 x_{3} & =14
\end{aligned}
$$

Or

2. (a) Weight 1 N , stretches a spring ' 5 cm '. A weight of ' 3 N ' is attached to the spring and weight ' W ' is pulled ' 10 cm ' below the equilibrium position and then released. Determine the position and velocity as function of time.
(b) Use Runge-Kutta method of fourth order to solve :

$$
\frac{d y}{d x}=\frac{1}{x+y},
$$

given that $x_{0}=0, y_{0}=1, h=0.2$ therefore find y at $x=0.4$.
(c) Solve the following system of equation by Cholesky's Method :

$$
\begin{align*}
9 x_{1}+6 x_{2}+12 x_{3} & =17.4 \tag{4}\\
6 x_{1}+13 x_{2}+11 x_{3} & =23.6 \\
12 x_{1}+11 x_{2}+26 x_{3} & =30.8
\end{align*}
$$

3. (a) The first four moments of a distribution about the value of ' 4 ' of the variable are $-1.5,17,-30$ and 108. Find the moments about mean, skewness and kurtosis.
(b) In certain examination, 200 students appeared in the subject of statistics. Average marks obtained were 50% with standard deviation 5%. How many students are expected to obtain more than 60% marks with the assumption that marks are distributed normally. Given that $\mathrm{P}(z=2)=0.4772$.
(c) Find the directional derivative of $\phi=x y^{2}+y z^{2}$ at $(2,-1,1)$ in the direction of vector $2 \hat{i}+\hat{j}+3 \hat{k}$.
Or
4. (a) Attempt any one :
(i) Show that :

$$
\nabla^{2}\left(\frac{\bar{a} \cdot \bar{b}}{r}\right)=0
$$

where \bar{a}, \bar{b} are constant vectors.
(ii) Show that :

$$
\nabla \times[\bar{a} \times(\bar{b} \times \bar{r})]=\bar{a} \times \bar{b}
$$

(b) Show that :

$$
\overline{\mathrm{F}}=\left(2 x z^{3}+6 y\right) \hat{i}+(6 x-2 y z) \hat{j}+\left(3 x^{2} z^{2}-y^{2}\right) \hat{k}
$$

is irrotational. Find the scalar potential ϕ such that $\overline{\mathrm{F}}=\nabla \phi$.
(c) Given :

x	x-series	y-series
Mean	18	100
Standard deviation	14	20

and coefficient of correlation is 0.8 . Find the most probable value of y if $x=70$ and most probable value of x if $y=90$.
[5352]-105
5. (a) Find the work done by the force :

$$
\overline{\mathrm{F}}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-x z\right) \hat{j}+\left(z^{2}-x y\right) \hat{k},
$$

in moving a particle from the point $(1,2,1)$ to the point (2, -5, 7).
(b) Use Gauss's Divergence theorem, to evaluate :

$$
\iint_{\mathrm{S}} \overline{\mathrm{~F}} \cdot \hat{n} d s
$$

where

$$
\overline{\mathrm{F}}=y^{2} z^{2} \hat{i}+x^{2} z^{2} \hat{j}+x^{2} y^{2} \hat{k},
$$

and ' S ' is the upper part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, above XOY-plane.
(c) Evaluate :

$$
\iint_{\mathrm{S}}(\nabla \times \overline{\mathrm{F}}) \cdot d \bar{s},
$$

where

$$
\overline{\mathrm{F}}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} z \hat{k},
$$

and ' S ' is the Hemi-sphere $x^{2}+y^{2}+z^{2}=1$, above XOY-plane.

Or

6. (a) Evaluate :

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r},
$$

where

$$
\begin{equation*}
\overline{\mathrm{F}}=\cos y \hat{i}+x(1-\sin y) \hat{j}, \tag{4}
\end{equation*}
$$

and ' C ' is the Ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1, z=0$.
(b) Evaluate :

$$
\iint_{\mathrm{S}}(x \hat{i}+y \hat{j}+z \hat{k}) \cdot d \bar{s},
$$

using Gauss' Divergence theorem, where ' S ' is the surface bounded by $x \geq 0, y \geq 0, z \geq 0,(x+y+z) \leq 1$.
(c) Using Stokes' theorem, evaluate :

$$
\int_{\mathrm{C}}\left(x^{2}+y-4\right) d x+(3 x y) d y+\left(2 x z+z^{2}\right) d z,
$$

where ' C ' is the curve of intersection of $z=9-\left(x^{2}+y^{2}\right)$ and $z \geq 0$.
7. (a) An elastic string is stretched between two fixed points at a distance ' l apart. One end is taken at origin and, at a distance $\left(\frac{2 l}{3}\right)$ from this end, the string is displaced at a distance ' a ' transversely and released from rest when in this position. Find $y(x, t)$ if y satisfies the equation :

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{7}
\end{equation*}
$$

(b) Solve :

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}},
$$

for the conduction of heat along a rod without radiation, subject to conditions :
(i) $u(x \cdot t)$ is bounded at $t \rightarrow \infty$
(ii) $\frac{\partial u}{\partial x}=0$ for $x=0, x=1$
(iii) $u=l x-x^{2}$ for $t=0,0 \leq x \leq 1$.

Or
8. (a) If a string of length ' P is initially at rest in its equilibrium position and each of its point is given a velocity $v(x)$ such that :

$$
\begin{array}{rlrl}
u(x) & =a x, & & 0 \leq x \leq \frac{1}{2} \\
& =a(l-x), & \frac{l}{2} \leq x \leq 1 \tag{7}
\end{array}
$$

Obtain the displacement $y(x, t)$ at any time ' ℓ.
(b) Solve $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0$ with conditions :
(i) $\quad v=0$, as $y \rightarrow \infty \quad \forall x$
(ii) $\quad v=0$ at $x=0, \quad \forall y$
(iii) $\quad v=0$ at $x=\pi, \quad \forall y$
(iv) $\quad v=v_{0}$ at $y=0, \quad 0<x<\pi$.

