Total No. of Questions-8]
[Total No. of Printed Pages-7

Seat	
No.	

[4657]-501

S.E. (Civil) (First Semester)

EXAMINATION, 2014

ENGINEERING MATHEMATICS-III

(2012 PATTERN)

Time : Two Hours
Maximum Marks : 50
N.B. :- (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
(ii) Answer all the questions.
(iii) Figures to the right indicate full marks.
(iv) Electronic pocket calculator is allowed.
(v) Assume suitable data, if necessary.

1. (a) Solve any two :
(i) $\quad\left(\mathrm{D}^{2}+2 \mathrm{D}+1\right) y=x e^{-x} \cos x$
(ii) $(2 x+1)^{2} \frac{d^{2} y}{d x^{2}}-2(2 x+1) \frac{d y}{d x}-12 y=6 x$
(iii) Use method of variation of parameters to solve :

$$
\left(\mathrm{D}^{2}-2 \mathrm{D}+2\right) y=e^{x} \tan x .
$$

P.T.O.

WWW. manaresults.co.in
(b) Solve the following system of equations using Gauss-Seidel iteration method :

$$
\begin{gather*}
28 x_{1}+4 x_{2}-x_{3}=32 \tag{4}\\
x_{1}+3 x_{2}+10 x_{3}=24 \\
2 x_{1}+17 x_{2}+4 x_{3}=35 \\
\text { Or }
\end{gather*}
$$

2. (a) Solve the following system of symmetrical simultaneous equations :
[4]

$$
\frac{d x}{3 z-4 y}=\frac{d y}{4 x-2 z}=\frac{d z}{3 y-2 x}
$$

(b) Use Euler's modified method to find the value of y satisfying the equation :

$$
\begin{equation*}
\frac{d y}{d x}=\log (x+y), y(1)=2 \tag{4}
\end{equation*}
$$

for $x=1.2$ and $x=1.4$ correct to three decimal places by taking $h=0.2$.
(c) Solve the following system of equations by Cholesky's method:

$$
\begin{aligned}
2 x_{1}-x_{2} & =1 \\
-x_{1}+3 x_{2}+x_{3} & =0 \\
x_{1}+2 x_{3} & =0 .
\end{aligned}
$$

3. (a) The first four moments of a distribution about $x=2$ are $1,2.5$, 5.5 and 1.6. Calculate first four moments about mean. Also find β_{1} and β_{2}.
(b) Assuming that the probability of an individual coal miner being killed in a mine accidents during a year is $\frac{1}{2400}$. Use Poisson's distribution to calculate the probability that in a mine employing 200 miners there will be at least one fatal accident in a year.
(c) Find the directional derivative of $\phi=x y+y z^{2}$ at (1, $\left.-1,1\right)$ towards the point $(2,1,2)$.

Or
4. (a) Prove the following (any one) :
(i) $\quad \nabla^{2}\left(\frac{\bar{a} \cdot \bar{b}}{r}\right)=0$
(ii) $\quad \nabla \times\left(\frac{\bar{a} \times \bar{r}}{r^{3}}\right)=\frac{-\bar{a}}{r^{3}}+\frac{3(\bar{a} \cdot \bar{r})}{r^{5}} \bar{r}$.
(b) Show that :

$$
\begin{equation*}
\overline{\mathrm{F}}=\left(2 x z^{3}+6 y\right) \bar{i}+(6 x-2 y z) \bar{j}+\left(3 x^{2} z^{2}-y^{2}\right) \bar{k} \tag{4}
\end{equation*}
$$

is irrotational. Find the scalar potential ϕ such that $\overline{\mathrm{F}}=\nabla \phi$.
(c) If two lines of regression are :

$$
9 x+y-\lambda=0 \text { and } 4 x+y=\mu
$$

and the means of x and y are 2 and -3 respectively, find the values of λ and μ, also find coefficient of correlation between x and y.
5. (a) Find the work done in moving a particle once round the circle $x^{2}+y^{2}=9$ in the $x y$ plane if the force field $\overline{\mathrm{F}}$ is given by :
$\overline{\mathrm{F}}=(2 x-y-z) i+\left(x+y-z^{2}\right) j+(3 x-2 y+4 z) \hat{k}$.
(b) Evaluate :

$$
\iint_{\mathrm{S}} \overline{\mathrm{~F}} \cdot \hat{n} d \mathrm{~S},
$$

where :

$$
\overline{\mathrm{F}}=(2 x+3 z) \hat{i}-(x z+y) \hat{j}+\left(y^{2}+2 z\right) \hat{k}
$$

and S is the surface of the sphere having centre at (3, $-1,2$) and radius 3 .
(c) Evaluate :

$$
\iint_{\mathrm{S}}(\nabla \times \overline{\mathrm{F}}) \cdot \hat{n} d \mathrm{~S},
$$

where ' S ' is the curved surface of the paraboloid :

$$
x^{2}+y^{2}=2 z
$$

bounded by the plane $z=2$, where :

$$
\begin{equation*}
\overline{\mathrm{F}}=3(x-y) \hat{i}+2 x z \hat{j}+x y \hat{k} \tag{5}
\end{equation*}
$$

Or
6. (a) If :

$$
\overline{\mathrm{F}}=\left(2 x z^{3}+6 y\right) \hat{i}+(6 x-2 y z) \hat{j}+\left(3 x^{2} z^{2}-y^{2}\right) \hat{k}
$$

evaluate :

$$
\int_{\mathrm{C}} \overline{\mathrm{~F}} \cdot d \bar{r}
$$

where C is the join of $(0,0,0)$ and ($1,1,1$). Is the force $\overline{\mathrm{F}}$ conservative ?
(b) Prove that :

$$
\iiint_{\mathrm{V}} \frac{1}{r^{2}} d v=\iint \frac{1}{r^{2}} \bar{r} \cdot d \overline{\mathrm{~S}}
$$

where S is the closed surface enclosing volume V. Hence evaluate :

$$
\iint \frac{x \hat{i}+y \hat{j}+z \hat{k}}{r^{2}} \cdot d \overline{\mathrm{~S}}
$$

where S is the surface of the sphere :

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=a^{2} . \tag{5}
\end{equation*}
$$

(c) Show that the velocity potential :

$$
\phi=\left(x^{2}-2 y^{2}+z^{2}\right)
$$

satisfies the Laplace's equation. Also determine the streamlines.
7. (a) A string of length l is stretched and fastened to two ends. Motion is started by displacing the string in the form :

$$
\begin{equation*}
u(x)=a \sin \left(\frac{\pi x}{l}\right) \tag{7}
\end{equation*}
$$

from which it is released at $t=0$.
Find the displacement u at any time ' t ', if it satisfies the equation :

$$
\begin{equation*}
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} \tag{6}
\end{equation*}
$$

(b) Solve :

$$
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

if :
(i) $u(x, \infty)$ is finite
(ii) $u(0, t)=0$
(iii) $u(l, t)=0$
(iv) $u(x, 0)=\frac{u_{0} x}{l}, 0<x<l$
8. (a) An infinitely long plane uniform plate is bounded by two parallel edges in the y direction and an end at right angles to them. The breadth of the plate is π. The end is maintained at temperature u_{0} at all points and other edges at zero temperature. Find steady state temperature $u(x, y)$, if it satisfies :

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{7}
\end{equation*}
$$

(b) Use Fourier transform to solve :
[6]

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} ; 0<x<\infty, t>0
$$

where $u(x, t)$ satisfies the conditions :
(i) $|u(x, t)|<\mathrm{M}$
(ii) $\left(\frac{\partial u}{\partial x}\right)_{x=0}=0$, at $t>0$

$$
=x, 0<x<1
$$

(iii) $u(x, 0)$

$$
=0, x>1
$$

